Learn More
ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or(More)
In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3-internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5,(More)
During differentiation, the Arabidopsis seed coat epidermal cells synthesize and secrete large quantities of pectinaceous mucilage into the apoplast, which is then released to encapsulate the seed upon imbibition. In this study, we showed that mutation in Irregular Xylem 14 (IRX14) led to a mucilage cohesiveness defect due to a reduced xylan content.(More)
Anatase TiO₂ nanoparticles (TNPs) are synthesized using the sol-gel method and loaded onto the surface of polyester-cotton (65/35) fabrics. The nanofabrics degrade formaldehyde at an efficiency of 77% in eight hours with visible light irradiation or 97% with UV light. The loaded TNPs display very little release from nanofabrics (~0.0%) during a standard(More)
Cell wall polysaccharides’ occurrences in two internodes of different development stages in M. lutarioriparius stem were analyzed and three major differences between them were identified by cell wall polysaccharide probes. Deposition and modification of cell wall polysaccharides during stem development affect biomass yield of the Miscanthus energy crop. The(More)
Large quantities of mucilage are synthesized in seed coat epidermis cells during seed coat differentiation. This process is an ideal model system for the study of plant cell wall biosynthesis and modifications. In this study, we show that mutation in Irregular Xylem 7 (IRX7) results in a defect in mucilage adherence due to reduced xylan biosynthesis. IRX7(More)
  • 1