Learn More
The predominant pathway for phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) synthesis is thought to be phosphorylation of phosphatidylinositol 4-phosphate at the 5 position of the inositol ring by type I phosphatidylinositol phosphate kinases (PIPK): PIPKIalpha, PIPKIbeta, and PIPKIgamma. PIPKIgamma has been shown to play a role in PI(4,5)P(2)(More)
In Drosophila, planar cell polarity (PCP) molecules such as Dachsous (Ds) may function as global directional cues directing the asymmetrical localization of PCP core proteins such as Frizzled (Fz). However, the relationship between Ds asymmetry and Fz localization in the eye is opposite to that in the wing, thereby causing controversy regarding how these(More)
Fukuyama-type congenital muscular dystrophy (FCMD), one of the most common autosomal-recessive disorders in Japan, is characterized by congenital muscular dystrophy associated with brain malformation due to a defect during neuronal migration. Through positional cloning, we previously identified the gene for FCMD, which encodes the fukutin protein. Here we(More)
Phosphorylated derivatives of phosphatidylinositol, collectively referred to as phosphoinositides, occur in the cytoplasmic leaflet of cellular membranes and regulate activities such as vesicle transport, cytoskeletal reorganization and signal transduction. Recent studies have indicated an important role for phosphoinositide metabolism in the aetiology of(More)
IUGR was induced by maternal administration of synthetic thromboxane A2 (STA2) from the 13th day of gestation. Fetuses and neonates showed a markedly significant weight reduction. In E16 IUGR brain, no pathological abnormalities were found, but morphological changes appeared in the cortical plate of E18 IUGR brain. In E20 IUGR brain, ectopic clusters of(More)
The major pathological change in Fukuyama-type congenital muscular dystrophy brain is polymicrogyria. Pathological studies of Fukuyama-type congenital muscular dystrophy brain indicated that protrusion of neurons into the subarachnoid space through breaches in the glia limitans-basal lamina complex is a cardinal pathogenic process in this condition. It(More)
Dietary arachidonic acid (AA) has roles in growth, neuronal development, and cognitive function in infants. AA is remarkably enriched in phosphatidylinositol (PI), an important constituent of biological membranes in mammals; however, the physiological significance of AA-containing PI remains unknown. In an RNA interference-based genetic screen using(More)
The membrane phospholipid phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P(2)] is a critical signal transducer in eukaryotic cells. However, the physiological roles of the type I phosphatidylinositol phosphate kinases (PIPKIs) that synthesize PI(4,5)P(2) are largely unknown. Here, we show that the alpha isozyme of PIPKI (PIPKIalpha) negatively regulates(More)
The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us(More)
BACKGROUND Influenza virus infection causes highly contagious, severe respiratory disorders and gives rise to thousands of deaths every year; however, the efficacy of currently approved defense strategies, including vaccines and neuraminidase inhibitors, is limited because the virus frequently acquires resistance via antigen drift and reassortment. It is(More)