Junko Ohkanda

Learn More
Ras malignant transformation requires posttranslational modification by farnesyltransferase (FTase). Here we report on the design and antitumor activity, in monotherapy as well as in combination therapy with cytotoxic agents, of a novel class of non-thiol-containing peptidomimetic inhibitors of FTase and the closely related family member(More)
Even though farnesyltransferase inhibitors (FTIs), a novel class of therapeutic agents presently in clinical trials, have preclinically outstanding anticancer activity and impressive lack of toxicity, their mechanism of action is not well understood. To enhance our understanding of how FTIs inhibit the growth of tumors, we have investigated their effects on(More)
Recently, we have shown that RhoB suppresses EGFR-, ErbB2-, Ras- and Akt-mediated malignant transformation and metastasis. In this paper, we demonstrate that the novel antitumor agents farnesyltransferase inhibitors (FTIs) and geranylgeranyltransferase I inhibitors (GGTIs) upregulate RhoB expression in a wide spectrum of human cancer cells including those(More)
Hepatitis delta virus (HDV) can dramatically worsen liver disease in patients coinfected with hepatitis B virus (HBV). No effective medical therapy exists for HDV. The HDV envelope requires HBV surface antigen proteins provided by HBV. Once inside a cell, however, HDV can replicate its genome in the absence of any HBV gene products. In vitro, HDV virion(More)
Mutations of the ras gene are among the most commonly identified transforming events in human cancers, including multiple myeloma. Farnesyltransferase inhibitors (FTI) were developed to prevent Ras processing and induce cancer cell death. Several FTIs are in phase II and one is in phase III clinical trials. Preclinically, most of the focus has been on solid(More)
The design, synthesis, and biological evaluation of a family of peptidomimetic inhibitors of protein geranylgeranyltransferase-I (PGGTase-I) are reported. The inhibitors are based on the C-terminal CAAL sequence of many geranylgeranylated proteins. Using 2-aryl-4-aminobenzoic acid derivatives as mimetics for the central dipeptide (AA), we have attached a(More)
Malignant cells in solid tumors survive under prolonged hypoxia and can be a source of resistance to current cancer therapies. Tumor hypoxia is also associated with a more malignant phenotype and poor survival in cancer patients. Recent progress in our understanding of the biology of tumor cells under hypoxia has led to increased attention on targeting(More)
Small-molecule stabilization of protein-protein interactions is an emerging field in chemical biology. We show how fusicoccanes, originally identified as fungal toxins acting on plants, promote the interaction of 14-3-3 proteins with the human potassium channel TASK-3 and present a semisynthetic fusicoccane derivative (FC-THF) that targets the 14-3-3(More)
N-(2-Chlorobenzyl)-substituted hydroxamate, readily produced by hydrolysis of ketoclomazone, was identified as an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), with an IC50 value of 1.0 μM. The compound inhibited the growth of Haemophilus influenzae. A convenient spectroscopic method for assaying DXS using NADPH-lactate dehydrogenase (LDH) is(More)
Several small GTPases of the Ras superfamily have been shown to antagonize TGFbeta signaling in human tumor cell lines. Some of these GTPases are post-translationally modified by farnesylation, a lipid modification catalyzed by farnesyltransferase and required for the proteins to attach to membranes and to function. In this study, we investigated the effect(More)