Learn More
PURPOSE To determine the consequences of expression of a novel connexin50 (CX50) mutant identified in a child with congenital total cataracts. METHODS The GJA8 gene was directly sequenced. Formation of functional channels was assessed by the two-microelectrode voltage-clamp METHOD Connexin protein levels and distribution were assessed by immunoblot(More)
The voltage- and calcium-dependent gating properties of two lens gap-junctional hemichannels were compared at the macroscopic and single channel level. In solutions containing zero added calcium and 1 mM Mg, chicken Cx56 hemichannels were mostly closed at negative potentials and application of depolarizing voltage clamp steps elicited a slowly activating(More)
Mutations in connexin 46 are associated with congenital cataracts. The purpose of this project was to characterize cellular and functional properties of two congenital cataract-associated mutations located in the NH2 terminus of connexin 46: Cx46D3Y and Cx46L11S, which we found localized to gap junctional plaques like wild-type Cx46 in transfected HeLa(More)
PURPOSE To characterize the properties of connexin 46 hemichannels in differentiating fiber cells isolated from mouse lenses. METHODS Differentiating fiber cells were isolated from mouse lenses using collagenase. Cellular localization of connexin 50 (Cx50) and connexin 46 (Cx46) was assessed by immunofluorescence. Membrane currents were recorded using(More)
PURPOSE The aim of this study was the genetic, cellular, and physiological characterization of a connexin50 (CX50) variant identified in a child with congenital cataracts. METHODS Lens material from surgery was collected and used for cDNA production. Genomic DNA was prepared from blood obtained from the proband and her parents. PCR amplified DNA fragments(More)
Gap junction channels, which are made of connexins, are critical for intercellular communication, a function that may be disrupted in a variety of diseases. We studied the consequences of two cataract-associated mutations at adjacent positions at the first extracellular boundary in human connexin50 (Cx50), W45S and G46V. Both of these mutants formed gap(More)
Cx46 and Cx50 are coexpressed in lens fiber cells where they form fiber-fiber gap junctions. Recent studies have shown that both proteins play a critical role in maintaining lens transparency. Although both Cx46 and Cx50 (or its chicken ortholog, Cx45.6) show a high degree of sequence homology, they exhibit marked differences in gap junctional channel(More)
The lens is proposed to have an internal microcirculation system consisting of continuously circulating ionic fluxes that play an essential role in maintaining lens transparency. One of the key components of this system is the sodium leak conductance. Here we investigate the contribution of Cx46 hemichannels to the basal membrane permeability of peripheral(More)