Learn More
Hepatocellular carcinoma (HCC) is a hypervascular cancer characterized by rapid progression as well as resistance to conventional chemotherapy. It has been shown that microRNAs play critical roles in pathogenesis of HCC. MicroRNA-122 (miR-122) is a liver-specific microRNA and is frequently downregulated in HCC. In the present study, we investigated whether(More)
High invasion and metastasis are the primary factors causing poor prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia promotes HCC invasion and metastasis through inducing(More)
UNLABELLED Hepatocellular carcinoma (HCC) exhibits cellular heterogeneity and embryonic stem-cell-related genes are preferentially overexpressed in a fraction of cancer cells of poorly differentiated tumors. However, it is not known whether or how these cancer cells contribute to tumor initiation and progression. Here, our data showed that increased(More)
DNA methylation is an important epigenetic modification and is frequently altered in cancer. Convert of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5 hmC was altered(More)
BACKGROUND microRNA-122 (miR-122) plays an important role in both of hepatic physiology and pathology. Downregulation of miR-122 was reported in human primary hepatocellular carcinoma (HCC) and restoration of miR-122 could suppress the growth of cancer cells. In this study, we presented a novel strategy for cancer therapy based on gene transfer of miR-122(More)
Both adoptive immunotherapy and gene therapy hold a great promise for treatment of malignancies. However, these strategies exhibit limited anti-tumor activity, when they are used alone. In this study, we explore whether combination of cytokine-induced killer (CIK) adoptive immunotherapy with oncolytic adenovirus-mediated transfer of human interleukin-12(More)
Our aims were to investigate and establish simple and reliable implanted hepatocellular carcinoma (HCC) models in Wistar rats. Concentrated suspensions of CBRH-7919 cancer cell lines were injected subcutaneously into the scapular regions of nude mice. The developing tumor tissues were then implanted into the livers of 45 adult Wistar rats. Dexamethasone(More)
The underlying molecular pathogenesis in hepatocellular carcinoma remains poorly understood. The transcription factor MEF2D promotes survival in various cell types and it seems to function as an oncogene in leukemia. However, its potential contributions to solid cancers have not been explored. In this study, we investigated MEF2D expression and function in(More)
It has been demonstrated that numerous microRNAs (miRNAs) have potent tumor-suppressing effects on a variety of cancers, implicating a possible application of miRNA in tumor therapy. Oncolytic adenovirus is a suitable vector to deliver tumor suppressor genes for treatment of cancers. However, it remains unknown whether co-expression of tumor suppressor(More)
Understanding molecular mechanisms in self-renewal of cancer stem cells (CSCs) is important for finding novel target in therapy of cancer. In this study, we explored potential effects of histone deacetylase (HDAC) on liver CSCs. Our data showed that HDAC inhibitors suppressed self-renewal and induced differentiation of liver CSCs. Furthermore, we(More)