Junji Kido

Learn More
Although organic light-emitting devices have been commercialized as flat panel displays since 1997, only singlet excitons were emitted. Full use of singlet and triplet excitons, electrophosphorescence, has attracted increasing attentions after the premier work made by Forrest, Thompson, and co-workers. In fact, red electrophosphorescent dye has already been(More)
Organic electroluminescent devices are light-emitting diodes in which the active materials consist entirely of organic materials. Here, the fabrication of a white light-emitting organic electroluminescent device made from vacuum-deposited organic thin films is reported. In this device, three emitter layers with different carrier transport properties, each(More)
A homoleptic iridium (iii) tris(pheny-limidazolinate) complex realizes a high EQE of 30%, a low turn-on voltage of 2.5 V, and a small efficiency roll-off in a blue organic light-emitting device (OLED). This device also shows high power efficiencies over 75 lm W(-1) and an ideal light distribution pattern at 100 cd m(-2).
In this work, 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (SQ) was systematically studied as an electron donor in solution processed photovoltaic cells, showing power conversion efficiency of >4.0% under AM1.5G 1 sun illumination at room temperature. Low mobilities were found to limit charge transport in the bulk heterojunctions.(More)
High power conversion efficiencies of over 6.0% are achieved with a squaraine compound from co-deposited photovoltaic cells with a simple device structure, in which the efficiency is insensitive to blending ratios and thicknesses of photoactive layers. It demonstrates the huge potential of low molecular weight materials in photovoltaic cells via vacuum(More)
A simple m-terphenyl modified carbazole derivative, 9-phenyl-3,6-bis-[1,1';3'1'']terphenyl-5'-yl-9H-carbazole (CzTP) was developed. By using CzTP as a host material, the PHOLEDs showed the maximum power efficiencies (eta(p, max)) of 55 lm W(-1) for blue and 113 lm W(-1) for green, respectively.
Two blue thermally activated delayed fluorescence molecules based on bis(phenylsulfonyl)benzene with very small singlet-triplet splitting energy were designed and synthesized by combining 3,6-di-tert-butylcarbazole with 1,4-bis(phenylsulfonyl)benzene and 1,3-bis(phenylsulfonyl)benzene, and a maximum external quantum efficiency of 11.7% was achieved for an(More)
A lithium quinolate complex (Liq) has high solubility in polar solvents such as alcohols and can be spin-coated onto emitting polymers, resulting in a smooth surface morphology. A polymer light-emitting device fabricated with spin-coated Liq as an electron injection layer (EIL) exhibited a lower turn-on voltage and a higher efficiency than a device with(More)
Tandem organic light-emitting devices (OLEDs) have attracted considerable attention for solid-state lighting and flat panel displays because their tandem architecture enables high efficiency and long operational lifetime simultaneously. In the tandem OLED structure, plural light-emitting units (LEUs) are stacked in series through a charge generation layer(More)