Learn More
Presenilin1 (PS1), a protein implicated in Alzheimer's disease (AD), forms complexes with N-cadherin, a transmembrane protein with important neuronal and synaptic functions. Here, we show that a PS1-dependent gamma-secretase protease activity promotes an epsilon-like cleavage of N-cadherin to produce its intracellular domain peptide, N-Cad/CTF2. NMDA(More)
Binding of EphB receptors to ephrinB ligands on the surface of adjacent cells initiates signaling cascades that regulate angiogenesis, axonal guidance, and neuronal plasticity. These functions require processing of EphB receptors and removal of EphB-ephrinB complexes from the cell surface, but the mechanisms involved are poorly understood. Here we show that(More)
Activation of EphB receptors by ephrinB (efnB) ligands on neuronal cell surface regulates important functions, including neurite outgrowth, axonal guidance, and synaptic plasticity. Here, we show that efnB rescues primary cortical neuronal cultures from necrotic cell death induced by glutamate excitotoxicity and that this function depends on EphB receptors.(More)
The presenilin (PS)/gamma-secretase system promotes production of the A beta (A beta) peptides by mediating cleavage of amyloid precursor protein (APP) at the gamma-sites. This system is also involved in the processing of type-I transmembrane proteins, including APP, cadherins and Notch1 receptors, at the epsilon-cleavage site, resulting in the production(More)
The role of presenilin-1 (PS1) in neuronal phosphatidylinositol 3-kinase (PI3K)/Akt signaling was investigated in primary neuronal cultures from wild-type (WT) and PS1 null (PS1-/-) embryonic mouse brains. Here we show that in PS1-/- cultures, the onset of neuronal maturation coincides with a decrease in the PI3K-dependent phosphorylation-activation of Akt(More)
Strong support for a primary causative role of the Abeta peptides in the development of Alzheimer's disease (AD) neurodegeneration derives from reports that presenilin familial AD (FAD) mutants alter amyloid precursor protein processing, thus increasing production of neurotoxic Abeta 1-42 (Abeta 42). This effect of FAD mutants is also reflected in an(More)
To reduce damage from toxic insults such as glutamate excitotoxicity and oxidative stresses, neurons may deploy an array of neuroprotective mechanisms. Recent reports show that progranulin (PGRN) gene null or missense mutations leading to inactive protein, are linked to frontotemporal lobar degeneration (FTLD), suggesting that survival of certain neuronal(More)
Mutations in the presenilin-1 (PS-1) gene are one cause of familial Alzheimer's disease (FAD). However, the functions of the PS-1 protein as well as how PS-1 mutations cause FAD are incompletely understood. Here we investigated if neuronal overexpression of wild-type or FAD mutant PS-1 in transgenic mice affects neurogenesis in the hippocampus of adult(More)
The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines,(More)