Learn More
This paper explores the use of an artificial immune system (AIS) for network intrusion detection. As one significant component for a complete AIS, static clonal selection with a negative selection operator is developed and the system is described in detail. Two important factors, the detector sample size and the antigen sample size, are investigated in(More)
One significant feature of artificial immune systems is their ability to adapt to continuously changing environments, dynamically learning the fluid patterns of ‘self’ and predicting new patterns of ‘non-self’. This paper introduces and investigates the behaviour of dynamiCS, a dynamic clonal selection algorithm, designed to have such properties of(More)
We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific(More)
In this paper, we propose an OpenCL framework that combines multiple GPUs and treats them as a single compute device. Providing a single virtual compute device image to the user makes an OpenCL application written for a single GPU portable to the platform that has multiple GPU devices. It also makes the application exploit full computing power of the(More)
This paper presents a negative selection algorithm with niching by an artificial immune system, for network intrusion detection. The paper starts by introducing the advantages of negative selection algorithm as a novel distributed anomaly detection approach for the development of a network intrusion detection system. After discussing the problems of(More)
In this paper, we propose SnuCL, an OpenCL framework for heterogeneous CPU/GPU clusters. We show that the original OpenCL semantics naturally fits to the heterogeneous cluster programming environment, and the framework achieves high performance and ease of programming. The target cluster architecture consists of a designated, single host node and many(More)
This paper reviews and assesses the analogy between the human immune system and network intrusion detection systems. The promising results from a growing number of proposed computer immune models for intrusion detection motivate this work. The paper begins by briefly introducing existing intrusion detection systems (IDS’s). A set of general requirements for(More)
The Cell BE processor is a heterogeneous multicore that contains one PowerPC Processor Element (PPE) and eight Synergistic Processor Elements (SPEs). Each SPE has a small software-managed local store. Applications must explicitly control all DMA transfers of code and data between the SPE local stores and the main memory, and they must perform any coherence(More)
In this paper, we present the design and implementation of an Open Computing Language (OpenCL) framework that targets heterogeneous accelerator multicore architectures with local memory. The architecture consists of a general-purpose processor core and multiple accelerator cores that typically do not have any cache. Each accelerator core, instead, has a(More)
There is a list of unique immune features that are currently absent from the existing artificial immune systems and other intelligent paradigms. We argue that some of AIS features can be inherent in an application itself, and thus this type of application would be a more appropriate substrate in which to develop and integrate the benefits brought by AIS. We(More)