Learn More
RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this(More)
λ exonuclease degrades one strand of duplex DNA in the 5'-to-3' direction to generate a 3' overhang required for recombination. Its ability to hydrolyze thousands of nucleotides processively is attributed to its ring structure, and most studies have focused on the processive phase. Here we have used single-molecule fluorescence resonance energy transfer(More)
Named Data Networking (NDN) uses content names as routing entries, and thus the scalability of NDN routing is of primary concern. NDN allows in-network caching as a built-in functionality; however, if network nodes make caching decisions individually, duplicate copies of the same content may exist among nearby nodes. To address these problems, we propose(More)
Phosphates along the DNA function as chemical energy frequently used by nucleases to drive their enzymatic reactions. Exonuclease functions as a machine that converts chemical energy of the phosphodiester-chain into mechanical work. However, the roles of phosphates during exonuclease activities are unknown. We employed λ exonuclease as a model system and(More)
  • 1