Learn More
Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would(More)
Object localization is a challenging problem due to variations in object's structure and illumination. Although existing part based models have achieved impressive progress in the past several years, their improvement is still limited by low-level feature representation. Therefore, this paper mainly studies the description of object structure from both(More)
Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust(More)
Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain(More)
This paper presents a system of data decomposition and spatial mixture modeling for part based models. Recently, many enhanced part based models (with e.g., multiple features, more components or parts) have been proposed. Nevertheless, those enhanced models bring high computation cost together with the risk of over-fitting. To tackle this problem, we(More)
—Object detection is a fundamental task in the area of computer vision. Deformable part based model obtains great success in the past several years, demonstrating very promising performance. A lot of papers emerge on part based model such as structure learning, learning more discriminative features. To help researchers better understand the existing visual(More)
Deformable object matching, which is also called elastic matching or deformation matching, is an important and challenging problem in computer vision. Although numerous deformation models have been proposed in different matching tasks, not many of them investigate the intrinsic physics underlying deformation. Due to the lack of physical analysis, these(More)
Markov Random Field (MRF) is an important tool and has been widely used in many vision tasks. Thus, the optimization of MRFs is a problem of fundamental importance. Recently, Veskler and Kumar et. al propose the range move algorithms, which are one of the most successful solvers to this problem. However, two problems have limited the applicability of(More)
Markov random fields (MRF) have become an important tool for many vision applications, and the optimization of MRFs is a problem of fundamental importance. Recently, Veksler and Kumar et al. proposed the range move algorithms, which are some of the most successful optimizers. Instead of considering only two labels as in previous move-making algorithms, they(More)