Jung Woo Choe

Learn More
3D ultrasound imaging is becoming increasingly prevalent in the medical field. Compared to conventional 2D imaging systems, 3D imaging can provide a detailed view of tissue structures that makes diagnosis easier for the physicians. In addition, 2D image slices can be formed at various orientations to the transducer , making the examination less dependent on(More)
Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic(More)
Contemporary sonography is performed by digitally beamforming signals sampled by several transducer elements placed upon an array. High-resolution digital beamforming introduces the demand for a sampling rate significantly higher than the signal's Nyquist rate, which greatly increases the volume of data that must be processed. In 3D ultrasound imaging, 2D(More)
Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the(More)
  • 1