Jung-Suk Sung

Learn More
Granzyme A (GzmA) activates a caspase-independent cell death pathway with morphological features of apoptosis. Single-stranded DNA damage is initiated when the endonuclease NM23-H1 becomes activated to nick DNA after granzyme A cleaves its inhibitor, SET. SET and NM23-H1 reside in an endoplasmic reticulum-associated complex (the SET complex) that(More)
Repair of oxidative DNA damage in mitochondria was thought limited to short-patch base excision repair (SP-BER) replacing a single nucleotide. However, certain oxidative lesions cannot be processed by SP-BER. Here we report that 2-deoxyribonolactone (dL), a major type of oxidized abasic site, inhibits replication by mitochondrial DNA (mtDNA) polymerase(More)
Many oxidative DNA lesions are handled well by base excision repair (BER), but some types may be problematic. Recent work indicates that 2-deoxyribonolactone (dL) is such a lesion by forming stable, covalent cross-links between the abasic residue and DNA repair proteins with lyase activity. In the case of DNA polymerase beta, the reaction is potentiated by(More)
The fpr gene, which encodes a ferredoxin-NADP+ reductase, is known to participate in the reversible redox reactions between NADP+/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at(More)
Oxidized abasic sites are a major form of DNA damage induced by free radical attack and deoxyribose oxidation. 2-Deoxyribonolactone (dL) is a C1'-oxidized abasic site implicated in DNA strand breakage, mutagenesis, and formation of covalent DNA-protein cross-links (DPCs) with repair enzymes such as DNA polymerase beta (polbeta). We show here that mammalian(More)
The rate, extent, and DNA synthesis patch size of base excision repair (BER) were measured using Escherichia coli GM31 cell-free extracts and a pGEM (form I) DNA substrate containing a site-specific uracil or ethenocytosine target. The rate of complete BER was stimulated (approximately 3-fold) by adding exogenous E. coli DNA ligase to the cell-free extract,(More)
Alishewanella agri BL06(T) (= KCTC 22400(T) = JCM 15597(T)) was isolated from landfill soil in Pohang, South Korea. A. agri showed the ability to degrade pectin, a structural heteropolysaccharide present in the cell wall of plants. Here we report the genome sequence of Alishewanella agri BL06(T), the second sequenced strain in the genus Alishewanella.
Base excision DNA repair (BER) is fundamentally important in handling diverse lesions produced as a result of the intrinsic instability of DNA or by various endogenous and exogenous reactive species. Defects in the BER process have been associated with cancer susceptibility and neurodegenerative disorders. BER funnels diverse base lesions into a common(More)
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after(More)