Learn More
Gene delivery to the central nervous system (CNS) has potential as a means for treating numerous debilitating neurological diseases. Nonviral gene vector platforms are tailorable and can overcome key limitations intrinsic to virus-mediated delivery; however, lack of clinical efficacy with nonviral systems to date may be attributed to limited gene vector(More)
Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate(More)
The efficacy of nucleus-targeted drug- or gene-carrying nanoparticles may be limited by slow transport through the molecularly crowded cytoplasm following endosome escape. Cytoskeletal elements and cellular organelles may pose steric and/or adhesive obstacles to the efficient intracellular transport of nanoparticles. To potentially reduce adhesive(More)
Highly viscoelastic and adhesive sputum has precluded efficient nanoparticle-based drug and gene delivery to the lungs of patients with cystic fibrosis (CF). We sought to determine whether nanoparticles coated with non-mucoadhesive polymers could penetrate CF sputum, and to use these "muco-inert particles" (MIPs) as non-destructive nanoprobes to(More)
Because of various mechanical, metallurgical, and commercial constraints, aneurysm clips are manufactured from different alloys, including several stainless steel and cobalt alloys. Some of the steels contain volume fractions of the crystal phase known as martensite. Martensitic alloys have body-centered cubic structure, are prone to stress corrosion(More)
A number of neurodegenerative disorders may potentially be treated by the delivery of therapeutic genes to neurons. Nonviral gene delivery systems, however, typically provide low transfection efficiency in post-mitotic differentiated neurons. To uncover mechanistic reasons for this observation, we compared gene transfer to undifferentiated and(More)
AIMS Sputum poses a critical diffusional barrier that strongly limits the efficacy of drug and gene carriers in the airways of individuals with cystic fibrosis (CF). Previous attempts to enhance particle penetration of CF sputum have focused on either reducing its barrier properties via mucolytics, or decreasing particle adhesion to sputum constituents by(More)
Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF) must similarly penetrate purulent lung airway mucus (sputum) to deliver DNA to airway epithelial cells. However, surprisingly little is(More)
Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The(More)