Jung-Hwan Park

Learn More
Microfabrication technology has been adapted to produce micron-scale needles as a safer and painless alternative to hypodermic needle injection, especially for protein biotherapeutics and vaccines. This study presents a design that encapsulates molecules within microneedles that dissolve within the skin for bolus or sustained delivery and leave behind no(More)
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin,(More)
Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 microm. When(More)
To overcome skin's barrier properties that block transdermal delivery of most drugs, we and others have microfabricated arrays of microscopic needles, primarily out of silicon or metal. This study addresses microneedles made of biocompatible and biodegradable polymers, which are expected to improve safety and manufacturability. To make biodegradable polymer(More)
As an alternative to hypodermic injection or implantation of controlled-release systems, this study designed and evaluated biodegradable polymer microneedles that encapsulate drug for controlled release in skin and are suitable for self-administration by patients. Arrays of microneedles were fabricated out of poly-lactide-co-glycolide using a mold-based(More)
Thermal ablation is a promising mechanism to increase permeability of the skin's outer barrier layer of stratum corneum while sparing deeper living tissues. In this study, finite element modeling predicted that the skin surface should only be heated on the microsecond timescale in order to avoid significant temperature rises in living cells and nerve(More)
Patients with diarrhea-predominant irritable bowel syndrome (IBS-D) appear to have increased intestinal permeability; it has been suggested that activation of protease-activated receptor-2 (PAR-2) receptors is responsible for this alteration. The aims of this study are to evaluate (1) if rectal (large bowel) permeability is increased in IBS-D and (2) if(More)
Biodegradable polymeric microneedles were developed as a method for achieving sustained transdermal drug release. These microneedles have potential as a patient-friendly substitute for conventional sustained release methods. However, they have limitations related to the difficulty of achieving separation of the needles into the skin. We demonstrated that(More)
Microneedle rollers have been used to treat large areas of skin for cosmetic purposes and to increase skin permeability for drug delivery. In this study, we introduce a polymer microneedle roller fabricated by inclined rotational UV lithography, replicated by micromolding hydrophobic polylactic acid and hydrophilic carboxy-methyl-cellulose. These(More)
Although topical drug delivery is a convenient route of administration to treat various eye diseases, it has serious limitations due to rapid clearance of the formulation from the surface of the eye. In this study, we engineered microparticles for both sustained drug delivery and prolonged residence time on the extraocular surface. Microparticles were(More)