Jung-Do Choi

Learn More
The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing(More)
A reliable model of tobacco acetohydroxy acid synthase (AHAS) was obtained by homology modeling based on a yeast AHAS X-ray structure using the Swiss-Model server. Conserved residues at the dimer interface were identified, of which the functional roles of four residues, namely H142, E143, M489, and M542, were determined by site-directed mutagenesis. Eight(More)
The enzyme AHAS (acetohydroxy acid synthase), which is involved in the biosynthesis of valine, leucine and isoleucine, is the target of several classes of herbicides. A model of tobacco AHAS was generated based on the X-ray structure of yeast AHAS. Well conserved residues at the herbicide-binding site were identified, and the roles of three of these(More)
In GOLD (genomes online database), the re It has been a successful technique, for researches on genome evolution and for functional annotation of newly sequenced genomes, to construct an OPCs(orthologous protein clusters) with the best reciprocal BLAST hits from multiple complete-genomes. It, however, needs time-labor processes to make the OPCs by hand and(More)
Acetohydroxy acid synthase (AHAS, EC 2.2.1.6; also known as acetolactate synthase, ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in plants and microorganisms. AHAS is the target of several classes of herbicides. In the present study, the role of three well-conserved arginine residues (R141, R372, and R376) in(More)
  • 1