Learn More
One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR,(More)
Double-strand break (DSB) damage in yeast and mammalian cells induces the rapid ATM (ataxia telangiectasia mutated)/ATR (ataxia telangiectasia and Rad3 related)-dependent phosphorylation of histone H2AX (gamma-H2AX). In budding yeast, a single endonuclease-induced DSB triggers gamma-H2AX modification of 50 kb on either side of the DSB. The extent of(More)
DNA damage such as double-strand breaks (DSBs) causes rapid alterations of chromatin structure, including the posttranslational modifi cation of histones through the activated PI3K-like kinases ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related; Shiloh, 2003; McGowan and Russell, 2004; Kitagawa and Kastan, 2005; Harrison and(More)
The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain(More)
In response to a DNA double-strand break (DSB), cells undergo a transient cell cycle arrest prior to mitosis until the break is repaired. In budding yeast (Saccharomyces cerevisiae), the DNA damage checkpoint is regulated by a signaling cascade of protein kinases, including Mec1 and Rad53. When DSB repair is complete, cells resume cell cycle progression (a(More)
During Saccharomyces cerevisiae mating-type switching, an HO endonuclease-induced double-strand break (DSB) at MAT is repaired by recombining with one of two donors, HMLα or HMRa, located at opposite ends of chromosome III. MATa cells preferentially recombine with HMLα; this decision depends on the Recombination Enhancer (RE), located about 17 kb to the(More)
Organisms must be able to respond to low oxygen in a number of homeostatic and pathological contexts. Regulation of hypoxic responses via the hypoxia-inducible factor (HIF) is well established, but evidence indicates that other, HIF-independent mechanisms are also involved. Here, we report a hypoxic response that depends on the accumulation of lactate, a(More)
In response to a DNA double-strand break (DSB), chromatin is rapidly modified by the damage dependent checkpoint kinases. Also, disassembly of chromatin occurs at the break site. The damage-induced modification of chromatin structure is involved in the maintenance of the checkpoint. However, it has not been determined how chromatin is restored to its(More)
Oxygen deprivation induces a range of cellular adaptive responses that enable to drive cancer progression. Here, we report that lysine-specific demethylase 1 (LSD1) upregulates hypoxia responses by demethylating RACK1 protein, a component of hypoxia-inducible factor (HIF) ubiquitination machinery, and consequently suppressing the oxygen-independent(More)
Despite its wide use as a first-line therapeutic agent, gemcitabine has shown limited efficacy in advanced pancreatic cancer due to chemoresistance by as yet unidentified mechanisms. Our goal here was to identify molecular features involved in gemcitabine chemoresistance. Pyruvate kinase M2 (PKM2), a key enzyme of aerobic glycolysis, has recently emerged as(More)