Learn More
Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental(More)
We report here a facile method to obtain folic acid (FA)-protected gold nanoparticles (Au NPs) by heating an aqueous solution of HAuCl(4)/FA in which FA acts as both the reducing and stabilizing agent. The successful formation of FA-protected Au NPs is demonstrated by UV/Vis spectroscopy, transmission electron microscopy (TEM), selected-area electron(More)
Ginseng (Panax ginseng C. A. Mey.) is widely used as a major medicinal herb and as a feedstock for the medicine, beverage, food, cosmetic, etc. industries, in China and several other Asian countries. However, limited research has been accomplished into its genetics, genomics and breeding. To clone, characterize and utilize the genes of economic importance(More)
In this article, carbon nanoparticles (CNPs) were used as a novel fluorescent sensing platform for highly sensitive and selective Hg(2+) detection. To the best of our knowledge, this is the first example of CNPs obtained from candle soot used in this type of sensor. The general concept used in this approach is based on that adsorption of the fluorescently(More)
Through a new and simple ion-exchange route, two-electron redox mediator thionine has been deliberately incorporated into the carbon nanotubes (CNTs)/Nafion composite film due to the fact that there is strong interaction between any of two among the three materials (ion-exchange process between thionine and Nafion, strong adsorption of thionine by CNTs, and(More)
In this Letter, we demonstrate the first use of carbon nanoparticles (CNPs) obtained from carbon soot by lighting a candle as a cheap, effective fluorescent sensing platform for Ag(+) detection with a detection limit as low as 500 pM and high selectivity. We further demonstrate its practical application to detect Ag(+) in a real sample.
We demonstrated a facile and green approach to synthesize bifunctional fluorescent carbon nanodots via soy milk, which not only showed favorable photoluminescent properties, but also exhibited good electrocatalytic activity towards oxygen reduction reaction.
In this Communication, we report water-soluble nano-C(60) in the first use as an effective fluorescent sensing platform for the highly sensitive and selective detection of Ag(+). The general concept used in this approach is based on a fluorescently labeled single-stranded DNA (ssDNA) probe that adsorbs on nano-C(60), leading to substantial dye fluorescence(More)