• Citations Per Year
Learn More
Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe₃O₄@MIL-100(Fe) core-shell magnetic(More)
A novel porous Au@MIL-100(Fe) core-shell nanocatalyst with controllable MIL-100(Fe) shell thickness has been fabricated by using a versatile step-by-step fashion. Catalytic studies show that the Au@MIL-100(Fe) nanocatalyst exhibits much higher catalytic activity than the pure Au nanoparticles, suggesting that the MIL-100(Fe) shell enhances the catalytic(More)
We have investigated the chemical bonding and electronic structure of a graphene oxide-sulfur (GO-S) nanocomposite by X-ray Photoelectron Spectroscopy (XPS), Near-edge X-ray Absorption Fine Structure (NEXAFS), and X-ray Emission Spectroscopy (XES). The nanocomposite, synthesized by a chemical reaction-deposition approach followed by low temperature thermal(More)
Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water(More)
Lithium/sulfur (Li/S) cells have attracted much attention due to their higher theoretical specific capacity and energy compared to those of current lithium-ion cells. However, the application of Li/S cells is still hampered by short cycle life. Sulfur-graphene oxide (S-GO) nanocomposites have shown promise as cathode materials for long-life Li/S cells(More)
The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those(More)
The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel(More)
The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH₃(CH₂)15N⁺(CH₃)₃Br-) and with charge/discharge cycling. The introduction of CTAB changes the(More)
Carbon dioxide capture and use as a carbon feedstock presents both environmental and industrial benefits. Here we report the discovery of a hybrid oxide catalyst comprising manganese oxide nanoparticles supported on mesoporous spinel cobalt oxide, which catalyses the conversion of carbon dioxide to methanol at high yields. In addition, carbon-carbon bond(More)