Learn More
In neurons, neurogranin (Ng) binds calmodulin (CaM), and its binding affinity is reduced by increasing Ca2+, phosphorylation by PKC, or oxidation by oxidants. Ng concentration in the hippocampus of adult mice varied broadly (Ng+/+, 160-370 and Ng+/-, approximately 70-230 pmol/mg); the level in Ng+/+ mice is one of the highest among all neuronal CaM-binding(More)
In the present study, 40 Sprague-Dawley rats were divided into forced swim stress group and controls, with 20 rats in each group (10 for behavioral tests, 10 for protein detection). The forced swim stress group received swim stress for 14 consecutive days, and the controls were stress-free. After stress, 20 rats were tested for behavioral observation using(More)
  • Xiaoli Qi, Wenjuan Lin, +4 authors Meng Sun
  • Neurobiology of disease
  • 2008
Our previous research indicates that the extracellular signal-regulated kinase (ERK)-cyclic AMP-responsive-element-binding protein (CREB) signal system may be involved in the molecular mechanism of depression. The present study further investigated the effect of antidepressant fluoxetine on the ERK-CREB signal system and the depressive-like behaviors in(More)
Recently, accumulated studies have suggested that protein kinases C (PKC) play a central role in the development of ischemic-hypoxic preconditioning (I/HPC) in the brain. However, which types of PKC isoforms might be responsible for neuroprotection is still not clear, especially when the systematic investigation of PKC isoform-specific changes in brain(More)
BACKGROUND Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB) is a well-characterized(More)
MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134(More)
The understanding of molecular mechanism underlying ischemia/reperfusion-induced neuronal death and neurological dysfunction may provide therapeutic targets for ischemic stroke. The up-regulated miRNA-30a among our previous identified 19 MicroRNAs (miRNAs) in mouse brain after 6 h middle cerebral artery occlusion (MCAO) could negatively regulate Beclin 1(More)
Studies have demonstrated that optic nerve transection results in apoptotic cell death of retinal ganglion cells (RGCs) and neurons within lateral geniculate nucleus (LGN). Heat shock protein (Hsp) 70 was reported to be involved in protecting cells from injury under various pathological conditions in vivo and in vitro. To determine the involvement of Hsp70(More)
Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its(More)
We previously reported the involvement of conventional protein kinase C (cPKC) βII, γ, novel PKC (nPKC) ε and their interacting proteins in hypoxic pre-conditioning (HPC)-induced neuroprotection. In this study, the large-scale miRNA microarrays and bioinformatics analysis were used to determine the differentially expressed miRNAs and their PKC-isoform(More)