Learn More
BACKGROUND DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are(More)
BACKGROUND DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However,(More)
BACKGROUND DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has(More)
  • Junbin Zhang, Zeping Cai, Liangmin Huang Zhang, J Cai, Huang, J Zhang +3 others
  • 2006
The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck(More)
DNA barcoding is a molecular method that uses a short standardized DNA sequence as a species identification tool. In this study, the standard 652 base-pair region of the mitochondrial cytochrome oxidase subunit I gene (COI) was sequenced in marine fish specimens captured in China. The average genetic distance was 50-fold higher between species than within(More)
The spotted scat, Scatophagus argus, has become a popular commercial fish in recent years. However, spotted scat fingerlings originate mainly from wild resources due to difficulties in the artificial propagation of this species. Thus, an understanding of its population genetic structure is necessary for its conservation management and commerical(More)
Excessive inflammation resulting from activation of the innate immune system significantly contributes to ischemia/reperfusion injury (IRI). Inflammatory reactions in both IRI and infections share the same signaling pathways evoked by danger/pathogen associated molecular pattern molecules. The cytosolic retinoid-inducible gene I(RIG-I)-like RNA receptor(More)
Dopamine is an important regulator of renal natriuresis and is critical for the adaptation of many animals to changing environmental salinity. However, the molecular mechanisms through which dopamine promotes this adaptation remain poorly understood. We studied the effects of dopamine on renal hypo-osmoregulation in the euryhaline fish Scatophagus argus (S.(More)
As a result of the development of rapid and efficient sequencing technologies, complete sequences of numerous mitochondrial genomes are now available. Mitochondrial genomes have been widely used to evaluate relationships between species in several fields, including evolutionary and population genetics, as well as in forensic identification and in the study(More)
Plectropomus leopardus is an important commercial fish in South-East Asia. To date, there is little genetic information available about its population structure. In this study, 16 polymorphic microsatellite loci were developed for this species and characterized in 182 wild individuals. The observed and expected heterozygosity ranged from 0.236 to 0.912 and(More)