Learn More
The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite.(More)
The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed(More)
—Kernel-based mean shift (MS) trackers have proven to be a promising alternative to stochastic particle filtering track-ers. Despite its popularity, MS trackers have two fundamental drawbacks: (1) The template model can only be built from a single image; (2) It is difficult to adaptively update the template model. In this work we generalize the plain MS(More)
For many machine learning algorithms such as k-nearest neighbor ( k-NN) classifiers and k-means clustering, often their success heavily depends on the metric used to calculate distances between different data points. An effective solution for defining such a metric is to learn it from a set of labeled training samples. In this work, we propose a fast and(More)
We concern the problem of learning a Mahalanobis distance metric for improving nearest neighbor classification. Our work is built upon the large margin nearest neighbor (LMNN) classification framework. Due to the semidefiniteness constraint in the optimization problem of LMNN, it is not scal-able in terms of the dimensionality of the input data. The(More)
Distance metric learning is of fundamental interest in machine learning because the employed distance metric can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally(More)
The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed(More)
—Distance metric learning is of fundamental interest in machine learning because the distance metric employed can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally(More)
Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support(More)