Learn More
To determine age-related changes, the initial linear vestibulo-ocular reflex (LVOR) of eight older subjects of mean age 65±7 years (mean ± SD, range 56–75 years) was compared with that of nine younger subjects of mean age 24±5 years (range 18–31 years) in response to random transients of whole-body heave (interaural) translation at peak acceleration of 0.5g(More)
During rapid head rotations, saccades ipsiversive with compensatory vestibulo-ocular reflex (VOR) slow phases may augment the deficient VOR and assist gaze stabilization in space. The present experiments compared these vestibular catch-up saccades (VCUSs) with visually and memory-guided saccades. To characterize VCUSs and their relationship to deficiency of(More)
The vestibulo-ocular reflexes stabilize retinal images during head movements. While there is a wealth of information about the interaction between the cerebellum and vestibulo-ocular reflexes mediated by the semicircular canals, little is known about the role of the cerebellum in the generation of the otolith-mediated linear vestibulo-ocular reflex (LVOR).(More)
The linear vestibulo-ocular reflex (LVOR) to surge (fore-aft) translation has complex kinematics varying with target eccentricity and distance. To determine normal responses and aging changes, 9 younger [age, 28 +/- 2 (SE) yr] and 11 older subjects (age, 69 +/- 2 yr) underwent 0.5 g whole body surge transients while wearing binocular scleral search coils.(More)
During transient, high-acceleration rotation, performance of the normal vestibulo-ocular reflex (VOR) depends on viewing distance. With near targets, gain (eye velocity/head velocity) enhancement is manifest almost immediately after ocular rotation begins. Later in the response, VOR gain depends on both head rotation and translation; gain for near targets(More)
To determine age-related changes, the initial horizontal vestibulo-ocular reflex (VOR) of 11 younger normal subjects (aged 20–32 years) was compared with that of 12 older subjects (aged 58–69 years) in response to random transients of whole-body acceleration of 1,000 and 2,800°/s2 delivered around eccentric vertical axes ranging from 10 cm anterior to 20 cm(More)
To determine whether dynamic visual acuity (DVA) during head rotations on the stationary body can lateralize unilateral vestibular deafferentation and detect non-labyrinthine compensation mechanisms, 15 normal and 11 subjects with unilateral vestibular deafferentation underwent manually imposed and self-generated transient yaw head rotations during(More)
OBJECTIVES To assess residual vestibular function in patients with severe bilateral vestibulopathy comparing low frequency sinusoidal rotation with the novel technique of random, high acceleration rotation of the whole body. METHODS Eye movements were recorded by electro-oculography in darkness during passive, whole body sinusoidal yaw rotations at(More)
An ideal vestibulo-ocular reflex (VOR) generates ocular rotations compensatory for head motion. During visually guided movements, Listing's law (LL) constrains eye rotation to axes in Listing's plane (LP). Recently, it has been reported that the VOR axis is not collinear with the rotation axis of the head, but is influenced by eye position in the orbit.(More)