Jun Zhang

Learn More
—Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several(More)
Conventional content-based image retrieval (CBIR) schemes employing relevance feedback may suffer from some problems in the practical applications. First, most ordinary users would like to complete their search in a single interaction especially on the web. Second, it is time consuming and difficult to label a lot of negative examples with sufficient(More)
—Feature aggregation is a critical technique in content-based image retrieval systems that employ multiple visual features to characterize image content. One problem in feature aggregation is that image similarity in different feature spaces can not be directly comparable with each other. To address this problem, a new feature aggregation approach, series(More)
—Network traffic classification is an essential component for network management and security systems. To address the limitations of traditional port-based and payload-based methods, recent studies have been focusing on alternative approaches. One promising direction is applying machine learning techniques to classify traffic flows based on packet and flow(More)
As a fundamental tool for network management and security, traffic classification has attracted increasing attention in recent years. A significant challenge to the robustness of classification performance comes from zero-day applications previously unknown in traffic classification systems. In this paper, we propose a new scheme of Robust statistical(More)