Learn More
Many multimedia applications can benefit from techniques for adapting existing classifiers to data with different distributions. One example is cross-domain video concept detection which aims to adapt concept classifiers across various video domains. In this paper, we explore two key problems for classifier adaptation: (1) how to transform existing(More)
Based on keypoints extracted as salient image patches, an image can be described as a "bag of visual words" and this representation has been used in scene classification. The choice of dimension, selection, and weighting of visual words in this representation is crucial to the classification performance but has not been thoroughly studied in previous work.(More)
Bag-of-features (BoF) deriving from local keypoints has recently appeared promising for object and scene classification. Whether BoF can naturally survive the challenges such as reliability and scalability of visual classification, nevertheless, remains uncertain due to various implementation choices. In this paper, we evaluate various factors which govern(More)
Many data mining applications can benefit from adapt- ing existing classifiers to new data with shifted distribu- tions. In this paper, we present Adaptive Support Vector Machine (Adapt-SVM) as an efficient model for adapting a SVM classifier trained from one dataset to a new dataset where only limited labeled examples are available. By in- troducing a new(More)
We present an efficient system for video search that maximizes the use of human bandwidth, while at the same time exploiting the machine's ability to learn in real-time from user selected relevant video clips. The system exploits the human capability for rapidly scanning imagery augmenting it with an active learning loop, which attempts to always present(More)
—Based on the local keypoints extracted as salient image patches, an image can be described as a " bag-of-visual-words (BoW) " and this representation has appeared promising for object and scene classification. The performance of BoW features in semantic concept detection for large-scale multimedia databases is subject to various representation choices. In(More)
As a prevailing web media format, nowadays Flash™ movies are created, delivered, and viewed by over millions of users in their daily experiences with the Internet. However, issues regarding the indexing and retrieval of Flash movies are unfortunately overlooked by the research community, which severely restrict the utilization of the extremely valuable(More)
Combining retrieval results from multiple modalities plays a crucial role for video retrieval systems, especially for automatic video retrieval systems without any user feedback and query expansion. However, most of current systems only utilize query independent combination or rely on explicit user weighting. In this work, we propose using query-class(More)
People as news subjects carry rich semantics in broadcast news video and therefore finding a named person in the video is a major challenge for video retrieval. This task can be achieved by exploiting the multi-modal information in videos, including transcript, video structure, and visual features. We propose a comprehensive approach for finding specific(More)