Learn More
We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very(More)
Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target(More)
Interactive segmentation, in which a user provides a bounding box to an object of interest for image segmentation, has been applied to a variety of applications in image editing, crowdsourcing, computer vision, and medical imaging. The challenge of this semi-automatic image segmentation task lies in dealing with the uncertainty of the foreground object(More)
Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to “fall off” the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold directly(More)
Cancer tissues in histopathology images exhibit abnormal patterns; it is of great clinical importance to label a histopathology image as having cancerous regions or not and perform the corresponding image segmentation. However, the detailed annotation of cancer cells is often an ambiguous and challenging task. In this paper, we propose a new learning(More)
Labeling a histopathology image as having cancerous regions or not is a critical task in cancer diagnosis; it is also clinically important to segment the cancer tissues and cluster them into various classes. Existing supervised approaches for image classification and segmentation require detailed manual annotations for the cancer pixels, which are(More)
We introduce a new light-field dataset of materials, and take advantage of the recent success of deep learning to perform material recognition on the 4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first(More)
What makes an image appear realistic? In this work, we are answering this question from a data-driven perspective by learning the perception of visual realism directly from large amounts of data. In particular, we train a Convolutional Neural Network (CNN) model that distinguishes natural photographs from automatically generated composite images. The model(More)
Discovering object classes from images in a fully unsupervised way is an intrinsically ambiguous task; saliency detection approaches however ease the burden on unsupervised learning. We develop an algorithm for simultaneously localizing objects and discovering object classes via bottom-up (saliency-guided) multiple class learning (bMCL), and make the(More)
This paper proposes an interactive framework that allows a user to rapidly explore and visualize a large image collection using the medium of <i>average images</i>. Average images have been gaining popularity as means of artistic expression and data visualization, but the creation of compelling examples is a surprisingly laborious and manual process. Our(More)