Learn More
In the rhizosphere, phosphorus (P) levels are low because of P uptake into the roots. Rhizobacteria live on carbon (C) exuded from roots, and may contribute to plant nutrition by liberating P from organic compounds such as phytates. We isolated over 300 phytate (Na-inositol hexa-phosphate; Na-IHP)-utilizing bacterial strains from the rhizosheath and the(More)
Cellobiose 2-epimerase (CE; EC 5.1.3.11) is known to catalyze the reversible epimerization of cellobiose to 4-O-beta-D-glucopyranosyl-D-mannose in Ruminococcus albus cells. Here, we report a CE in a ruminal strain of Eubacterium cellulosolvens for the first time. The nucleotide sequence of the CE had an ORF of 1218 bp (405 amino acids; 46 963.3 Da). The CE(More)
Cellobiose 2-epimerase (EC 5.1.3.11) was first identified in 1967 as an extracellular enzyme that catalyzes the reversible epimerization between cellobiose and 4-O-beta-D-glucopyranosyl-D-mannose in a culture broth of Ruminococcus albus 7 (ATCC 27210(T)). Here, for the first time, we describe the purification of cellobiose 2-epimerase from R. albus NE1. The(More)
The consecutive genes BF0771-BF0774 in the genome of Bacteroides fragilis NCTC 9343 were found to constitute an operon. The functional analysis of BF0772 showed that the gene encoded a novel enzyme, mannosylglucose phosphorylase that catalyzes the reaction, 4-O-β-d-mannopyranosyl-d-glucose+Pi→mannose-1-phosphate+glucose. Here we propose a new mannan(More)
The Brachiaria hybrid cv. Mulato is well adapted to low-fertility acid soils deficient in phosphorus (P). To study the grassy forage's mechanisms for tolerating low P supply, we compared it with rice (Oryza sativa L. cv. Kitaake). We tested by using nutrient solution cultures, and quantified the effects of P deficiency on the enzymatic activities of(More)
Plants have developed several strategies for coping with phosphorus (P) deficiency. However, the details of the regulation of gene expression of adaptations to low P are still unclear. Using a cDNA microarray, transcriptomic analyses were carried out of the rice genes regulated by P deficiency and P re-supply to P-deficient plants. The OsPI1 gene, which was(More)
Cellobiose 2-epimerase (CE, EC 5.1.3.11) catalyzes the reversible epimerization of cellobiose to 4-O-beta-D-glucopyranosyl-D-mannose. In this study, we found a CE gene in the genome sequence of non-cellulolytic Bacteroides fragilis NCTC 9343. The recombinant enzyme, expressed in Escherichia coli cells, catalyzed a hydroxyl stereoisomerism at the C-2(More)
The roots of white lupin (Lupinus albus L. cv. Kievskij mutant) secrete acid phosphatase, S-APase, when they grow under conditions of low available phosphorus (P). S-APases hydrolyze organic phosphate compounds in the rhizosphere and supply inorganic phosphate to the plants. Low phosphorus availability also induces vigorous growth of cluster roots. In this(More)
We recently reported that cellobiose 2-epimerase from Ruminococcus albus effectively converted lactose to epilactose. In this study, we examined the biological effects of epilactose on intestinal microbiota, bile acid metabolism, and postadministrative plasma glucose by animal tests. Dietary supplementation with epilactose or fructooligosaccharide (4.5%(More)
Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates,(More)