Jun Suzurikawa

Learn More
Individual neurons are heterogeneous and have profound impact on population activity in a complex cortical network. Precise experimental control of the firing of multiple neurons would be therefore beneficial to advance our understanding of cell-network interactions. Except for direct intracellular stimulation, however, it is difficult to gain precise(More)
This paper provides a detailed process flow for fabricating an easy-to-prepare, inexpensive, dense array of tungsten microelectrodes. We designed the process flow to minimize routine tasks by separating an initial preparation of a master mold from a routine preparation of substrate replication, array assembly and tip processing. Sandblast processing first(More)
Light addressing is an emerging and sophisticated technique that can induce pinpoint and/or patterned neuronal activation in cultured neurons. We previously developed a light-addressable electrode using hydrogenated amorphous silicon (a-Si:H), which was sandwiched between a tin oxide (SnO(2)) substrate and a passivation layer of zinc antimonate(More)
Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a(More)
INTRODUCTION In order to electrochemically and/or electrophysiologically monitor in-situ activities of cultured cells adhering on a substrate, micro-electrode arrays (MEAs) patterned on the substrate have been utilized. MEAs allow non-invasive and multisite monitoring with the fine temporal resolution. However, the spatial resolution of MEAs is limited by(More)
Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced(More)
  • 1