Learn More
We have developed a tool for performing surgical operations on living cells at nanoscale resolution using atomic force microscopy (AFM) and a modified AFM tip. The AFM tips are sharpened to ultrathin needles of 200-300 nm in diameter using focused ion beam etching. Force-distance curves obtained by AFM using the needles indicated that the needles penetrated(More)
Insects produce several types of peptides to combat a broad spectrum of invasive pathogenic microbes, including protozoans. However, despite this defense response, infections are often established. Our aim was to design novel peptides that produce high rates of mortality among protozoa of the genus Plasmodium, the malaria parasites. Using existing(More)
We describe a low-invasive gene delivery method that uses an etched atomic force microscopy (AFM) tip or nanoneedle that can be inserted into a cell nucleus without causing cellular damage. The nanoneedle is 200 nm in diameter and 6 mum in length and is operated using an AFM system. The probabilities of insertion of the nanoneedle into human mesenchymal(More)
The extracellular matrix (ECM) comprises the heterogeneous environment outside of cells in a biological system. The ECM is dynamically organized and regulated, and many biomolecules secreted from cells diffuse throughout the ECM, regulating a variety of cellular processes. Therefore, investigation of the diffusive behaviors of biomolecules in the(More)
BACKGROUND The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software.(More)
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in CNS dysfunction. Although oligodendrocyte precursor cell (OPC) transplantation therapy is an effective cure for several disorders, there is no readily available source of these cells. Recent studies have described the generation of(More)
The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their(More)
This study proposes a cell manipulation method with aggregated air bubbles on cell culture medium. This method requires no additional regents nor devices, except for normal cell-culture materials such as cell culture dishes and pipettes. Bubbles generated by pipetting were spontaneously aggregated with regularity on the whole surface and used as a mask for(More)