Learn More
The principles and recent progress in the research and development of photobiological hydrogen production are reviewed. Cyanobacteria produce hydrogen gas using nitrogenase and/or hydrogenase. Hydrogen production mediated by native hydrogenases in cyanobacteria occurs under in the dark under anaerobic conditions by degradation of intracellular glycogen. In(More)
We have developed a tool for performing surgical operations on living cells at nanoscale resolution using atomic force microscopy (AFM) and a modified AFM tip. The AFM tips are sharpened to ultrathin needles of 200-300 nm in diameter using focused ion beam etching. Force-distance curves obtained by AFM using the needles indicated that the needles penetrated(More)
The transfection efficiency of primary cells is the bottleneck for their use with miniaturized formats for gene validation assays. We have found that when formulations containing various reporter plasmids were microarrayed on glass slides (chips), hMSCs cultivated on the chip incorporated and expressed the microarrayed plasmid DNAs with high efficiency and(More)
We have studied the expression, localization, and function of the ABCG2 transporter, a universal stem cell marker, at the protein level in human cultured neural stem/progenitor cells (hNSPCs) using immunoblotting, immunofluorescence, and ATPase assays. Human NSPCs were isolated from human fetal brain and propagated in vitro as neurospheres. Both the cells(More)
Regulatory mechanism in PHB [poly-(hydroxybutyrate)] accumulation by cyanobacteria, especially by a thermophilic isolate, Synechococcus MA19 was reviewed in comparison with a genetically engineered strain. The strain, MA19 accumulates PHB under nitrogen starved and photoautotrophic conditions (MA19-N). Little PHB synthase activity was detected in crude(More)
P450 monooxygenases exhibit great potential for application to bioreactors for the decomposition of various hydrophobic chemicals including pollutant compounds. P450-containing microsomes were immobilized in spinach chloroplasts for use in light-driven bioreactors. We tested three methods (entrapment, adsorption and cross-linking) to immobilize chloroplasts(More)
In this study, a direct detection system for herbicides inhibiting photosynthetic electron transfer was developed using the photosynthetic reaction center (RC) from the purple bacterium, Rhodobacter sphaeroides, and surface plasmon resonance (SPR) apparatus. The heavy-subunit-histidine-tagged RCs (HHisRCs) were immobilized on an SPR sensor chip via nickel(More)
We describe a low-invasive gene delivery method that uses an etched atomic force microscopy (AFM) tip or nanoneedle that can be inserted into a cell nucleus without causing cellular damage. The nanoneedle is 200 nm in diameter and 6 mum in length and is operated using an AFM system. The probabilities of insertion of the nanoneedle into human mesenchymal(More)
To construct a homogeneous lipid membrane chromatographic phase, biotinylated unilamellar liposomes of small and large sizes (SUVs and LUVs, respectively) were immobilized in avidin- or streptavidin-derived gel beads in amounts up to 55 micromol phospholipid/ml gel bed at yields above 50%. The immobilized liposomes exhibited excellent stability due to(More)
Insects produce several types of peptides to combat a broad spectrum of invasive pathogenic microbes, including protozoans. However, despite this defense response, infections are often established. Our aim was to design novel peptides that produce high rates of mortality among protozoa of the genus Plasmodium, the malaria parasites. Using existing(More)