Learn More
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land(More)
Photosynthetic light reactions establish electron flow in the chloroplast's thylakoid membranes, leading to the production of the ATP and NADPH that participate in carbon fixation. Two modes of electron flow exist-linear electron flow (LEF) from water to NADP(+) via photosystem (PS) II and PSI in series and cyclic electron flow (CEF) around PSI (ref. 2).(More)
Description: This second volume of The Chlamydomonas Sourcebook provides the background and techniques for using this important organism in plant research. From biogenesis of chloroplasts and mitochondria and photosynthesis to respiration and nitrogen assimilation, this volume introduces scientists to the functions of the organism. The volume then moves on(More)
Arginine257 (R257), in the de-helix that caps the Q(B) site of the D1 protein, has been shown by mutational studies to play a key role in the sensitivity of Photosystem II (PS II) to bicarbonate-reversible binding of the formate anion. In this article, the role of this residue has been further investigated through D1 mutations (R257E, R257Q, and R257K) in(More)
Formate is known to cause significant inhibition in the electron and proton transfers in photosystem II (PSII); this inhibition is uniquely reversed by bicarbonate. It has been suggested that bicarbonate functions by providing ligands to the non-heme iron and by facilitating protonation of the secondary plastoquinone QB. Numerous lines of evidence indicate(More)
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins,(More)
Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes(More)
Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as(More)
Chloroplast-encoded genes, like nucleus-encoded genes, exhibit circadian expression. How the circadian clock exerts its control over chloroplast gene expression, however, is poorly understood. To facilitate the study of chloroplast circadian gene expression, we developed a codon-optimized firefly luciferase gene for the chloroplast of Chlamydomonas(More)
Dissipating excess energy of light is critical for photosynthetic organisms to keep the photosynthetic apparatus functional and less harmful under stressful environmental conditions. In the green alga Chlamydomonas reinhardtii, efficient energy dissipation is achieved by a process called non-photochemical quenching (NPQ), in which a distinct member of light(More)