Jun-Mei Zhou

Learn More
Trigger factor (TF) is the first chaperone encountered by the nascent chain in bacteria and forms a stoichiometric complex with the ribosome. However, the functional significance of the high cytosolic concentration of uncomplexed TF, the majority of which is dimeric, is unknown. To gain insight into TF function, we investigated the TF concentration(More)
Temperature-induced unfolding of Escherichia coli trigger factor (TF) and its domain truncation mutants, NM and MC, were studied by ultra-sensitive differential scanning calorimetry (UC-DSC). Detailed thermodynamic analysis showed that thermal induced unfolding of TF and MC involves population of dimeric intermediates. In contrast, the thermal unfolding of(More)
Ure2p is the precursor protein of the Saccharomyces cerevisiae prion [URE3]. Ure2p shows homology to glutathione transferases but lacks typical glutathione transferase activity. A recent study found that deletion of the Ure2 gene causes increased sensitivity to heavy metal ions and oxidants, whereas prion strains show normal sensitivity. To demonstrate that(More)
Ure2 is the protein determinant of the [URE3] prion phenotype in Saccharomyces cerevisiae and consists of a flexible N-terminal prion-determining domain and a globular C-terminal glutathione transferase-like domain. Overexpression of the type I Hsp40 member Ydj1 in yeast cells has been found to result in the loss of [URE3]. However, the mechanism of prion(More)
A simple and general method for disrupting chromosomal genes and introducing insertions is described. This procedure involves eliminating wild-type bacterial genes and introducing mutant alleles or other insertions at the original locus of the wild-type gene. To demonstrate the utility of this approach, the tig gene of Escherichia coli was replaced by(More)
The yeast prion Ure2p is composed of an N-terminal prion domain, and a C-terminal globular domain, which shows similarity to glutathione transferases (GSTs) in both sequence and structure. Ure2p protects Saccharomyces cerevisiae cells from heavy metal ion and oxidant toxicity. Ure2p shows glutathione-dependent peroxidase (GPx) activity, which is often an(More)
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of(More)
Reduced denatured lysozyme tends to aggregate at neutral pH and competition between productive folding and aggregation substantially reduces the efficiency of refolding. Trigger factor, a folding catalyst and chaperone can, depending on the concentration of trigger factor and the solution conditions, cause either a substantial increase (chaperone activity)(More)
The yeast prion protein Ure2 forms amyloid-like filaments in vivo and in vitro. This ability depends on the N-terminal prion domain, which contains Asn/Gln repeats, a motif thought to cause human disease by forming stable protein aggregates. The Asn/Gln region of the Ure2p prion domain extends to residue 89, but residues 15-42 represent an island of(More)
Spontaneous refolding of GdnHCl denatured bovine carbonic anhydrase II (BCA II) shows at least three phases: a burst phase, a fast phase, and a slow phase. The fast and slow phases are both controlled by proline isomerization. However, we find that in trigger factor (TF)-assisted BCA II folding, only the fast phase is catalyzed by wild-type TF, suggesting(More)