Jun Maruyama

Learn More
Cochlear implant surgery is currently the therapy of choice for profoundly deaf patients. However, the functionality of cochlear implants depends on the integrity of the auditory spiral ganglion neurons. This study assesses the combined efficacy of two classes of agents found effective in preventing degeneration of the auditory nerve following deafness,(More)
Based on in vitro studies, it is hypothesized that neurotrophic factor deprivation following deafferentation elicits an oxidative state change in the deafferented neuron and the formation of free radicals that then signal cell death pathways. This pathway to cell death was tested in vivo by assessing the efficacy of antioxidants (AOs) to prevent(More)
For patients with profound hearing loss, a cochlear implant is the only treatment available today. The function of a cochlear implant depends in part on the function and survival of spiral ganglion neurons. Following deafferentation, glial cell-derived neurotrophic factor (GDNF) is known to affect spiral ganglion neuron survival. The purpose of this study(More)
In stressful conditions, baroreflex vagal bradycardia (BVB) is often suppressed while blood pressure is increased. To address the role of the rostral ventrolateral medulla (RVL), a principal source of sympathetic tone, in inhibition of BVB, we microinjected DL-homocysteic acid (DLH, 6 nmol) into the RVL of chloralose-urethan-anesthetized,(More)
  • 1