Jun-Liang Dong

Learn More
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving(More)
We present a shifted skew-symmetric iteration method for solving the nonsymmetric positive definite or positive semidefinite linear complementarity problems. This method is based on the symmetric and skew-symmetric splitting of the system matrix, which has been adopted to establish efficient splitting iteration methods for solving the nonsymmetric systems(More)
The element-free Galerkin (EFG) method is one of the widely used meshfree methods for solving partial differential equations. In the EFG method, shape functions are derived from a moving least-squares (MLS) approximation, which involves the inversion of a small matrix for every point of interest. To avoid the calculation of matrix inversion in the(More)
  • 1