Learn More
We present the results of searches for nucleon decay via n → ¯ νπ 0 and p → ¯ νπ þ using data from a combined 172.8 kt · yr exposure of Super-Kamiokande-I,-II, and-III. We set lower limits on the partial lifetime for each of these modes: τ n→¯ νπ 0 > 1.1 × 10 33 years and τ p→¯ νπ þ > 3.9 × 10 32 years at a 90% confidence level.
We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year (535-day) exposure of the Super{Kamiokande detector. The data exhibit a zenith angle dependent decit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino ux. Experimental biases and uncertainties in the prediction of neutrino(More)
The results of the second phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first phase. The solar neutrino flux spectrum and time-variation as 2 well as oscillation results are statistically consistent with the first phase and do not show spectral distortion. The time-dependent flux measurement of the combined first(More)
The K2K experiment observes indications of neutrino oscillation: a reduction of nu(mu) flux together with a distortion of the energy spectrum. Fifty-six beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the neutrino production point, with an expectation of 80.1(+6.2)(-5.4). Twenty-nine one ring mu-like events are used to reconstruct(More)
Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the(More)
The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343(More)
The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55(More)
Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we(More)
The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3)  eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst).(More)
The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to(More)