Learn More
Therapeutic cancer vaccination is an attractive strategy because it induces T cells of the immune system to recognize and kill tumour cells in cancer patients. However, it remains difficult to generate large numbers of T cells that can recognize the antigens on cancer cells using conventional vaccine carrier systems. Here we show that α-Al(2)O(3)(More)
In this paper, we present a simple procedure to increase the sensitivity of a glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in silver (Ag) sol was investigated for the first time. GOx was simply mixed with Ag nanoparticles and cross-linked with a polyvinyl butyral (PVB) medium by(More)
The development of highly efficient anode materials is critical for enhancing the current output of microbial electrochemical cells. In this study, Au and Pd nanoparticle decorated graphite anodes were developed and evaluated in a newly designed multi-anode microbial electrolysis cell (MEC). The anodes decorated with Au nanoparticles produced current(More)
The marine diatom Nitzschia frustulum is a single-celled photosynthetic organism that uses soluble silicon as the substrate to fabricate intricately patterned silica shells called frustules consisting of 200 nm diameter pores in a rectangular array. Controlled photobioreactor cultivation of the N. frustulum cell suspension to silicon starvation induced(More)
Individual shells of the diatom Coscinodiscus were self-assembled into a rectangular array on a glass surface that possessed a polyelectrolyte multilayer patterned through inkjet printing. This patterned thin film possessed hierarchical order with nanostructure provided by the diatom biosilica. The process used two polyelectrolytes with opposite electric(More)
We report here on applying electric fields and dielectric media to achieve controlled alignment of single-crystal nickel silicide nanowires between two electrodes. Depending on the concentration of nanowire suspension and the distribution of electrical field, various configurations of nanowire interconnects, such as single, chained, and branched nanowires(More)
We present a floating-potential dielectrophoresis method used for the first time to achieve controlled alignment of an individual semiconducting or metallic single-walled carbon nanotube (SWCNT) between two electrical contacts with high repeatability. This result is significantly different from previous reports, in which bundles of SWCNTs were aligned(More)
Nearly monodisperse lanthanide-doped magnetite nanoparticles were obtained by thermally decomposing a mixture of Fe(acac)(3) and Ln(acac)(3) (acac = acetylacetonate; Ln = Sm, Eu, Gd) in the presence of passivating surfactants. Magnetic studies revealed room-temperature ferromagnetic behaviors of these doped nanoparticles, distinctly different from those of(More)
Narrow bandgap PbS nanoparticles, which may expand the light absorption range to the near-infrared region, were deposited on TiO2 nanorod arrays by successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The thicknesses of PbS nanoparticles were optimized to enhance the photovoltaic(More)
The biomineralization capacity of the photosynthetic marine diatom Nitzschia frustulum was harnessed to fabricate Si-Ge oxide nanocomposite materials. Germanium was incorporated into the diatom cell by a two-stage cultivation process. In stage 1, the N. frustulum cell suspension was grown up to cell density of 3 x 10(6) cells/mL in 0.35 mM silicic acid(More)