Learn More
Land plants evolved xylem vessels to conduct water and nutrients, and to support the plant. Microarray analysis with a newly established Arabidopsis in vitro xylem vessel element formation system and promoter analysis revealed the possible involvement of some plant-specific NAC-domain transcription factors in xylem formation. VASCULAR-RELATED NAC-DOMAIN6(More)
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into(More)
Tracheary elements (TEs) have a unique cell death program in which the rapid collapse of the vacuole triggers the beginning of nuclear degradation. Although various nucleases are known to function in nuclear DNA degradation in animal apoptosis, it is unclear what hydrolase is involved in nuclear degradation in plants. In this study, we demonstrated that an(More)
The phytohormone auxin is a key regulator of organogenesis in plants and is distributed asymmetrically via polar transport. However, the precise mechanisms underlying auxin-mediated organogenesis remain elusive. Here, we have analyzed the macchi-bou 2 (mab2) mutant identified in a pinoid (pid) enhancer mutant screen. Seedlings homozygous for either mab2 or(More)
Differentiating intrahepatic cholangiocarcinoma (ICC) from poorly differentiated hepatocellular carcinoma (p-HCC) is often difficult, but it is important for providing appropriate treatments. The purpose of this study was to examine the features differentiating ICC from p-HCC on contrast-enhanced dynamic-computed tomography (CT). This study examined 42(More)
The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the(More)
The plant cell cytosol is a dynamic and complex intracellular matrix that, by definition, contains no compartmentalization. Nonetheless, it maintains a wide variety of biochemical networks and often links metabolic pathways across multiple organelles. There have been numerous detailed proteomic studies of organelles in the model plant Arabidopsis thaliana,(More)
Programmed cell death (PCD) involves hydrolysis of genomic DNA, which must be catalyzed by endonuclease(s) capable of digesting dsDNA. Plants have two major classes of endonucleases active towards dsDNA, Zn2+-dependent endonuclease and Ca2+-dependent endonuclease. Both classes are found among endonucleases nominated for machineries of PCD in plants. Survey(More)
Eight infants with renal tumors diagnosed in the first month of life are presented. Three well-differentiated mesenchymal tumors were studied using angiographic and electron-microscopic techniques in addition to conventional histologic methods. The morphology of these unusual tumors is presented in detail and classification as benign fibromyoma or(More)
Plant mitochondria play central roles in cellular energy production, metabolism and stress responses. Recent phosphoproteomic studies in mammalian and yeast mitochondria have presented evidence indicating that protein phosphorylation is a likely regulatory mechanism across a broad range of important mitochondrial processes. This study investigated protein(More)