Learn More
Functional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density(More)
The diterpenoid phytohormone gibberellin (GA) controls diverse developmental processes throughout the plant life cycle. DELLA proteins are master growth repressors that function immediately downstream of the GA receptor to inhibit GA signaling. By doing so, DELLAs also play pivotal roles as integrators of internal developmental signals from multiple hormone(More)
GRAS proteins belong to a plant-specific transcription factor family. Currently, 33 GRAS members including a putative expressed pseudogene have been identified in the Arabidopsis genome. With a reverse genetic approach, we have constructed a "phenome-ready unimutant collection" of the GRAS genes in Arabidopsis thaliana. Of this collection, we focused on(More)
The SCARECROW (SCR) gene in Arabidopsis is required for asymmetric cell divisions responsible for ground tissue formation in the root and shoot. Previously, we reported that Zea mays SCARECROW (ZmSCR) is the likely maize ortholog of SCR. Here we describe conserved and divergent aspects of ZmSCR. Its ability to complement the Arabidopsis scr mutant phenotype(More)
Calcineurin B-like (CBL) interacting protein kinase 15 (CIPK15) is a newly identified positive regulator which is critical to directing the O(2) deficiency signal to the sugar signaling cascade as part of Amy3D (representative Amy3 gene) regulation in rice. It is located upstream and probably contributes to reserve mobilization under anoxia. In isolated(More)
Most flavonoids found in plants exist as glycosides, and glycosylation status has a wide range of effects on flavonoid solubility, stability, and bioavailability. Glycosylation of flavonoids is mediated by Family 1 glycosyltransferases (UGTs), which use UDP-sugars, such as UDP-glucose, as the glycosyl donor. AtGT-2, a UGT from Arabidopsis thaliana, was(More)
Reproductive success of angiosperms relies on the precise development of the gynoecium and the anther, because their primary function is to bear and to nurture the embryo sac/female gametophyte and pollen, in which the egg and sperm cells, respectively, are generated. It has been known that the GRF-INTERACTING FACTOR (GIF) transcription co-activator family(More)
MicroRNA (miR)390 cleaves the non-coding TAS3 precursor RNA for the production of tasiRNA-ARF, a group of an endogenous trans-acting small-interfering RNAs which cleave the transcripts of auxin response factor (ARF) 3/4. miR390-cleaved TAS3 RNA is polymerized and diced into tasiRNA-ARF by RNA-dependent RNA polymerase6 (RDR6) and Dicer-like4 (DCL4),(More)
Four UDP-dependent glucosyltransferase (UGT) genes, UGT706C1, UGT706D1, UGT707A3, and UGT709A4 were cloned from rice, expressed in Escherichia coli, and purified to homogeneity. In order to find out whether these enzymes could use flavonoids as glucose acceptors, apigenin, daidzein, genistein, kaempferol, luteolin, naringenin, and quercetin were used as(More)
During plant development, because no cell movement takes place, control of the timing and extent of cell division and coordination of the direction and extent of cell expansion are particularly important for growth and development. The plant hormone gibberellins (GAs) play key roles in the control of these developmental processes. However, little is known(More)