Learn More
Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian(More)
Regulation of circadian physiology relies on the interplay of interconnected transcriptional-translational feedback loops. The CLOCK-BMAL1 complex activates clock-controlled genes, including cryptochromes (Crys), the products of which act as repressors by interacting directly with CLOCK-BMAL1. We have demonstrated that CLOCK possesses intrinsic histone(More)
The molecular machinery that governs circadian rhythmicity is based on clock proteins organized in regulatory feedback loops. Although posttranslational modification of clock proteins is likely to finely control their circadian functions, only limited information is available to date. Here, we show that BMAL1, an essential transcription factor component of(More)
The Aurora kinases are cell cycle-regulatory serine-threonine kinases that have been implicated in the function of the centrosomes, kinetechores, chromosome dynamics, and cytokinesis. In comparison with other tissues, there are high levels of expression of Aurora-B and -C in testis. What their respective roles in mammalian spermatogenesis are is an open(More)
Accumulating evidence highlights intriguing interplays between circadian and metabolic pathways. We show that PER2 directly and specifically represses PPARγ, a nuclear receptor critical in adipogenesis, insulin sensitivity, and inflammatory response. PER2-deficient mice display altered lipid metabolism with drastic reduction of total triacylglycerol and(More)
Environmental cues modulate a variety of intracellular pathways whose signaling is integrated by the molecular mechanism that constitutes the circadian clock. Although the essential gears of the circadian machinery have been elucidated, very little is known about the signaling systems regulating it. Here, we report that signaling mediated by the dopamine D2(More)
BACKGROUND Cryptochromes (CRY), members of the DNA photolyase/cryptochrome protein family, regulate the circadian clock in animals and plants. Two types of animal CRYs are known, mammalian CRY and Drosophila CRY. Both CRYs participate in the regulation of circadian rhythm, but they have different light dependencies for their reactions and have different(More)
Light is the key entraining stimulus for the circadian clock, but several features of the signaling pathways that convert the photic signal to clock entrainment remain to be deciphered. Here, we show that light induces the production of hydrogen peroxide (H(2)O(2)) that acts as the second messenger coupling photoreception to the zebrafish circadian clock.(More)
MAP kinase phosphatase 1 (MKP1) is a negative regulator for the mitogen-activated protein kinase (MAPK)-mediated signal transduction, a key pathway that leads to the regulated expression of circadian clock genes. Here the authors analyzed mkp1 expression by in situ hybridization and found that mkp1 is a light-inducible and clock-controlled gene expressed in(More)