Learn More
We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago,(More)
BACKGROUND The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and(More)
Clinical studies demonstrate that prenatal stress causes cognitive deficits and increases vulnerability to affective disorders in children and adolescents. The underlying mechanisms are not yet fully understood. Here, we reported that prenatal stress (10 unpredictable, 1 s, 0.8 mA foot shocks per day during gestational days 13-19) impaired long-term(More)
Not all experiences are memorized equally well. Especially, some types of stress are unavoidable in daily life and the stress experience can be memorized for life. Previous evidence has showed that synaptic plasticity, such as long-term potentiation (LTP) that may be the major cellular model of the mechanism underlying learning and memory, is influenced by(More)
Behavioral stress can either block or facilitate memory and affect the induction of long-term potentiation (LTP) and long-term depression (LTD). However, the relevance of the stress experience-dependent long-term depression (SLTD) to spatial memory task is unknown. Here we have investigated the effects of acute and sub-acute elevated platform (EP) and foot(More)
Stress in early life is believed to cause cognitive and affective disorders, and to disrupt hippocampal synaptic plasticity in adolescence into adult, but it is unclear whether exposure to enriched environment (EE) can overcome these effects. Here, we reported that housing rats in cages with limited nesting/bedding materials on postnatal days 2-21 reduced(More)
Cytoplasmic male sterility is a maternally transmitted inability to produce viable pollen. Male sterility occurs in Texas (T) cytoplasm maize as a consequence of the premature degeneration of the tapetal cell layer during microspore development. This sterility can be overcome by the combined action of two nuclear restorer genes, rf1 and rf2a. The rf2a gene(More)
This study provided a comparative genomic analysis of the LEA gene family, and these may provide valuable information for their functional investigations in the future. Late embryogenesis abundant (LEA) proteins are a group of proteins that accumulate in response to cellular dehydration in many organisms. Here, we identified 27 LEA genes in tomato. A strong(More)