Learn More
Dopamine shapes a wide variety of psychomotor functions. This is mainly accomplished by modulating cortical and thalamic glutamatergic signals impinging upon principal medium spiny neurons (MSNs) of the striatum. Several lines of evidence suggest that dopamine D1 receptor signaling enhances dendritic excitability and glutamatergic signaling in striatonigral(More)
Parkinson disease is a common neurodegenerative disorder that leads to difficulty in effectively translating thought into action. Although it is known that dopaminergic neurons that innervate the striatum die in Parkinson disease, it is not clear how this loss leads to symptoms. Recent work has implicated striatopallidal medium spiny neurons (MSNs) in this(More)
Salient stimuli redirect attention and suppress ongoing motor activity. This attentional shift is thought to rely upon thalamic signals to the striatum to shift cortically driven action selection, but the network mechanisms underlying this interaction are unclear. Using a brain slice preparation that preserved cortico- and thalamostriatal connectivity, it(More)
The two principal excitatory glutamatergic inputs to striatal medium spiny neurons (MSNs) arise from neurons in the cerebral cortex and thalamus. Although there have been many electrophysiological studies of MSN glutamatergic synapses, little is known about how corticostriatal and thalamostriatal synapses differ. Using mouse brain slices that allowed each(More)
The substantia nigra pars compacta and ventral tegmental area contain the two largest populations of dopamine-releasing neurons in the mammalian brain. These neurons extend elaborate projections in the striatum, a large subcortical structure implicated in motor planning and reward-based learning. Phasic activation of dopaminergic neurons in response to(More)
Long-term depression (LTD) of the synapse formed between cortical pyramidal neurons and striatal medium spiny neurons is central to many theories of motor plasticity and associative learning. The induction of LTD at this synapse is thought to depend upon D(2) dopamine receptors localized in the postsynaptic membrane. If this were true, LTD should be(More)
Parkinson disease is a neurodegenerative disorder whose symptoms are caused by the loss of dopaminergic neurons innervating the striatum. As striatal dopamine levels fall, striatal acetylcholine release rises, exacerbating motor symptoms. This adaptation is commonly attributed to the loss of interneuronal regulation by inhibitory D(2) dopamine receptors.(More)
AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly(More)
Twenty years ago, striatal cholinergic neurons were central figures in models of basal ganglia function. But since then, they have receded in importance. Recent studies are likely to lead to their re-emergence in our thinking. Cholinergic interneurons have been implicated as key players in the induction of synaptic plasticity and motor learning, as well as(More)
Two-photon laser scanning microscopy (2PLSM) has allowed unprecedented fluorescence imaging of neuronal structure and function within neural tissue. However, the resolution of this approach is poor compared to that of conventional confocal microscopy. Here, we demonstrate supraresolution 2PLSM within brain slices. Imaging beyond the diffraction limit is(More)