Julius Ziegler

Learn More
Accurate 3d perception from video sequences is a core subject in computer vision and robotics, since it forms the basis of subsequent scene analysis. In practice however, online requirements often severely limit the utilizable camera resolution and hence also reconstruction accuracy. Furthermore, real-time systems often rely on heavy parallelism which can(More)
125 years after Bertha Benz completed the first overland journey in automotive history, the Mercedes Benz S-Class S 500 INTELLIGENT DRIVE followed the same route from Mannheim to Pforzheim, Germany, in fully autonomous manner. The autonomous vehicle was equipped with close-toproduction sensor hardware and relied solely on vision and radar sensors in(More)
Safe handling of dynamic highway and inner city scenarios with autonomous vehicles involves the problem of generating traffic-adapted trajectories. In order to account for the practical requirements of the holistic autonomous system, we propose a semi-reactive trajectory generation method, which can be tightly integrated into the behavioral layer. The(More)
In this paper, we present the strategy for trajectory planning that was used on-board the vehicle that completed the 103 km of the Bertha-Benz-Memorial-Route fully autonomously. We suggest a local, continuous method that is derived from a variational formulation. The solution trajectory is the constrained extremum of an objective function that is designed(More)
We present the hardware design, software architecture, and core algorithms of HERB 2.0, a bimanual mobile manipulator developed at the Personal Robotics Lab at Carnegie Mellon University. We have developed HERB 2.0 to perform useful tasks for and with people in human environments. We exploit two key paradigms in human environments, that they have structure(More)
Modern driver assistance systems such as collision avoidance or intersection assistance need reliable information on the current environment. Extracting such information from camera-based systems is a complex and challenging task for inner city traffic scenarios. This paper presents an approach for object detection utilizing sparse scene flow. For(More)
This paper reports on AnnieWAY, an autonomous vehicle that is capable of driving through urban scenarios and that successfully entered the finals of the 2007 DARPA Urban Challenge competition. After describing the main challenges imposed and the major hardware components, we outline the underlying software structure and focus on selected algorithms.(More)
We present a method for motion planning in the presence of moving obstacles that is aimed at dynamic on-road driving scenarios. Planning is performed within a geometric graph that is established by sampling deterministically from a manifold that is obtained by combining configuration space and time. We show that these graphs are acyclic and shortest path(More)
Next generation driver assistance systems require precise self localization. Common approaches using global navigation satellite systems (GNSSs) suffer from multipath and shadowing effects often rendering this solution insufficient. In urban environments this problem becomes even more pronounced. Herein we present a system for six degrees of freedom (DOF)(More)