Julius Hannink

Learn More
Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations(More)
Measurement of stride-related, biomechanical parameters is the common rationale for objective gait impairment scoring. State-of-the-art double-integration approaches to extract these parameters from inertial sensor data are, however, limited in their clinical applicability due to the underlying assumptions. To overcome this, we present a method to translate(More)
The multi–scale Frangi vesselness filter is an established tool in (retinal) vascular imaging. However, it cannot properly cope with crossings or bifurcations since it only looks for elongated structures. Therefore, we disentangle crossings/bifurcations via (multiple scale) invertible orientation scores and apply vesselness filters in this domain. This new(More)
Information from different bio-signals such as speech, handwriting, and gait have been used to monitor the state of Parkinson's disease (PD) patients, however, all the multimodal bio-signals may not always be available. We propose a method based on multi-view representation learning via generalized canonical correlation analysis (GCCA) for learning a(More)
Different modes of vibration of the vocal folds contribute significantly to the voice quality. The neutral mode phonation, often used in a modal voice, is one against which the other modes can be contrastively described, also called non-modal phonations. This paper investigates the impact of non-modal phonation on phonological posteriors, the probabilities(More)
OBJECTIVE Accurate estimation of spatial gait characteristics is critical to assess motor impairments resulting from neurological or musculoskeletal disease. Currently, however, methodological constraints limit clinical applicability of state-ofthe- art double integration approaches to gait patterns with a clear zero-velocity phase. METHODS We describe a(More)
Retinal image analysis is a challenging problem due to the precise quantification required and the huge numbers of images produced in screening programs. This paper describes a series of innovative brain-inspired algorithms for automated retinal image analysis, recently developed for the RetinaCheck project, a large-scale screening program for diabetic(More)
The purpose of this study was to assess the concurrent validity and test-retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson's disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were(More)