Learn More
A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single(More)
Epigenetic modifications mediated by histone deacetylases (HDACs) play important roles in the mechanisms of different neurologic diseases and HDAC inhibitors (HDACIs) have shown promise in therapy. However, pharmacodynamic profiles of many HDACIs in the brain remain largely unknown due to the lack of validated methods for noninvasive imaging of HDAC(More)
A noninvasive method for molecular imaging of the activity of different signal transduction pathways and the expression of different genes in vivo would be of considerable value. It would aid in understanding the role specific genes and signal transduction pathways have in various diseases, and could elucidate temporal dynamics and regulation at different(More)
The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and(More)
To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted(More)
UNLABELLED The efficacy of 3 radiolabeled probes of current interest for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) expression in vivo with PET, including (124)I- or (131)I-labeled 2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (FIAU), (18)F-labeled 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG), and (18)F-labeled(More)
Transcriptional targeting of gene expression has been plagued by the weakness of tissue-specific promoters. Thus, to increase promoter strength while maintaining tissue specificity, we constructed a recombinant adenovirus containing a binary promoter system with a tumor-specific promoter (CEA; carcinoembryonic antigen) driving a transcription(More)
Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of(More)
The feasibility of noninvasive imaging of adenoviral-mediated herpes virus type one thymidine kinase (HSV1-tk) gene transfer and expression was assessed in a well-studied animal model of metastatic colon carcinoma of the liver. Tumors were produced in syngeneic BALB/c mice by intrahepatic injection of colon carcinoma cells (MCA-26). Seven days later, three(More)
In order to noninvasively detect Salmonella delivery vectors within tumors, we used a genetically modified Salmonella, VNP20009, that expresses the herpes simplex thymidine kinase (HSV1-tk) reporter gene. VNP20009-TK were able to selectively localize within murine tumor models and to effectively sequester a radiolabeled nucleoside analogue,(More)