Julio Carballido-Gamio

Learn More
Diffusion tensor imaging (DTI) was used to delineate early laminar organization of the cerebrum in two extremely premature infants imaged postnatally at estimated ages of 25 and 27 menstrual weeks. The diffusivity and anisotropy of the cortical plate, subplate zone, intermediate zone, subventricular and periventricular zones, and germinal matrix are(More)
Segmentation of medical images has become an indispensable process to perform quantitative analysis of images of human organs and their functions. Normalized Cuts (NCut) is a spectral graph theoretic method that readily admits combinations of different features for image segmentation. The computational demand imposed by NCut has been successfully alleviated(More)
Diffusion tensor imaging (DTI) of the lumbar spine could improve diagnostic specificity. The purpose of this work was to determine the feasibility of and to validate DTI with single-shot fast spin-echo (SSFSE) for lumbar intervertebral discs at 1.5 and 3 T. Six normal volunteers were scanned with DTI-SSFSE using an eight- and a three-b-value protocol at 1.5(More)
T(1rho) and T(2) relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T(1rho) and T(2) values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T(1rho) and(More)
SUMMARY The standard diagnostic technique for assessing osteoporosis is dual X-ray absorptiometry (DXA) measuring bone mass parameters. In this study, a combination of DXA and trabecular structure parameters (acquired by computed tomography [CT]) most accurately predicted the biomechanical strength of the proximal femur and allowed for a better prediction(More)
Introduction Osteoarthritis (OA) is a chronic degenerative disease characterized primarily by the loss of articular cartilage. Although radiography is the primary clinical method of evaluating OA, radiographs lack the ability to directly image soft tissues and hence is limited to the detection of OA only at late stages of disease progression and is(More)
The purpose of this work was to implement autocalibrating GRAPPA-based parallel imaging (PI) for in vivo high-resolution (HR) MRI of cartilage and trabecular bone micro-architecture at 7T and to evaluate its performance based on comparison of MR-derived morphology metrics between accelerated and conventional images and comparison of geometry factor measures(More)
Understanding the skeletal effects of resistance exercise involves delineating the spatially heterogeneous response of bone to load distributions from different muscle contractions. Bone mineral density (BMD) analyses may obscure these patterns by averaging data from tissues with variable mechanoresponse. To assess the proximal femoral response to(More)
PURPOSE Studies have shown that functional analysis of knee cartilage based on magnetic resonance (MR) relaxation times is a valuable tool in the understanding of osteoarthritis (OA). In this work, the regional spatial distribution of knee cartilage T1rho, and T2 relaxation times based on texture and laminar analyses was studied to investigate if they(More)
In this paper, we present the development and application of current image processing techniques to perform MRI inter-subject comparison of knee cartilage thickness based on the registration of bone structures. Each point in the bone surface which is part of the bone-cartilage interface is assigned a cartilage thickness value. Cartilage and corresponding(More)