Julio C. Gutiérrez-Vega

Learn More
We introduce the generalized Airy-Gauss (AiG) beams and analyze their propagation through optical systems described by ABCD matrices with complex elements in general. The transverse mathematical structure of the AiG beams is form-invariant under paraxial transformations. The conditions for square integrability of the beams are studied in detail. The model(More)
Keywords: Ince equation Fractional calculus Ince polynomials Eigenvalue curves Stability Hill equation a b s t r a c t We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves aðÞ in function of the parameter ,(More)
A series scheme is discussed for the determination of the normalization constants of the even and odd Mathieu-Gauss (MG) optical beams. We apply a suitable expansion in terms of Bessel-Gauss (BG) beams and also answer the question of how many BG beams should be used to synthesize a MG beam within a tolerance. The structure of the normalization factors(More)
We introduce the generalized vector Helmholtz-Gauss (gVHzG) beams that constitute a general family of localized beam solutions of the Maxwell equations in the paraxial domain. The propagation of the electromagnetic components through axisymmetric ABCD optical systems is expressed elegantly in a coordinate-free and closed-form expression that is fully(More)
We demonstrate the existence of elliptic vortices of electromagnetic scalar wave fields. The corresponding intensity profiles are formed by propagation-invariant confocal elliptic rings. We have found that copropagation of this kind of vortex occurs without interaction. The results presented here also apply for physical systems described by the (2+1)(More)
  • 1