Learn More
Several molecules have been proposed as excitatory transmitters between glomus (type 1) cells and nerve terminals of petrosal ganglion (PG) neurons in the carotid body (CB). We tested whether ACh and ATP have a role to play as excitatory transmitters in the cat CB by recording intracellularly from identified PG neurons functionally connected to the CB in(More)
1. To examine the correlation between chemosensory response and dopamine release induced by hypoxic stimulation, we studied carotid bodies excised from anaesthetized cats. 2. The carotid bodies with their carotid (sinus) nerves were superfused in vitro with modified Tyrode solution (pH 7.40, at 37.5 degrees C) equilibrated with 20 or 100% O2. The PO2 of the(More)
We have recently reported that application of acetylcholine (ACh) or nicotine to the petrosal ganglion-the sensory ganglion of the glossopharyngeal nerve-elicits a burst of discharges in the carotid nerve branch, innervating the carotid body and sinus, but not in the glossopharyngeal branch, innervating the tongue and pharynx. Thus, the perikarya of sensory(More)
NaCN is a classical stimulus used to elicit discharges from carotid body chemoreceptors. The effect is assumed to be mediated by glomus (type I) cells, which release an excitatory transmitter for the excitation of carotid nerve endings. Since the sensory perikarya of the glossopharyngeal nerve (from which the carotid nerve branches) are located in the(More)
The electrophysiological characteristics of nodose ganglion sensory neurons, cultured alone or co-cultured with carotid body tissue, were compared. Some properties of the neurons and their response to acid (a carotid body 'natural' stimulus) changed in the presence of this tissue. (a) The evoked action potential after-hyperpolarization was smaller and(More)
The carotid body (CB) is the main arterial chemoreceptor. The most accepted model of arterial chemoreception postulates that carotid body glomus (type I) cells are the primary receptors, which are synaptically connected to the nerve terminals of petrosal ganglion (PG) neurons. In response to natural stimuli, glomus cells are expected to release one (or(More)
Satellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this(More)
The petrosal ganglion innervates carotid body chemoreceptors through the carotid (sinus) nerve. These primary sensory neurons are activated by transmitters released from receptor (glomus) cells, acetylcholine (ACh) having been proposed as one of the transmitters involved in this process. Since the perikarya of primary sensory neurons share several(More)
Chemoreceptor (glomus) cells of the carotid body are synaptically connected to the sensory nerve endings of petrosal ganglion (PG) neurons. In response to natural stimuli, the glomus cells release transmitters, which acting on the nerve terminals of petrosal neurons increases the chemosensory afferent discharge. Among several transmitter molecules present(More)