Julio Aguila Benitez

Learn More
Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with(More)
LCM-seq couples laser capture microdissection of cells from frozen tissues with polyA-based RNA sequencing and is applicable to single neurons. The method utilizes off-the-shelf reagents and direct lysis of the cells without RNA purification, making it a simple and relatively cheap method with high reproducibility and sensitivity compared to previous(More)
Single-cell sequencing has emerged as a revolutionary method that reveals biological processes with unprecedented resolution and scale, and has already greatly impacted biology and medicine. To investigate processes such as alternative splicing, novel exon detection and allele-specific expression (ASE), full-length based single-cell RNA-seq methods are(More)
The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and(More)
CRISPR/Cas9-based genome editing offers the possibility to knock out (KO) almost any gene of interest in an affordable and simple manner. The most common strategy is the introduction of a frameshift into the open reading frame (ORF) of the target gene which truncates the coding sequence (CDS) and targets the corresponding transcript for degradation by(More)
Converting resident glia into functional and subtype-specific neurons in vivo by delivering reprogramming genes directly to the brain provides a step forward toward the possibility of treating brain injuries or diseases. To date, it has been possible to obtain GABAergic and glutamatergic neurons via in vivo conversion, but the precise phenotype of these(More)
  • 1