Learn More
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also(More)
The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six(More)
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the(More)
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine(More)
We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In(More)
Miscanthus spp. are biofuel crops that are triggering growing interest worldwide due to their numerous agronomic advantages. Though breeding programs take into account usual key plant traits of agronomic interest (e.g., biomass production, adaptation to broader climatic range), they generally overlook plant attributes relating to pest and pathogen(More)
A quantitative analysis of the brains of 43 bat species is presented. Eleven brain components were studied. The species were arranged according to seven distinct dietary groups and it was found that the relative development of the principal components is related to those groups. The importance of neocorticalization as a reflection of evolution of all the(More)
  • 1