Julien Pérolat

Learn More
This paper provides an analysis of error propagation in Approximate Dynamic Programming applied to zero-sum two-player Stochastic Games. We provide a novel and unified error propagation analysis in L p-norm of three well-known algorithms adapted to Stochastic Games (namely Approximate Value Iteration, Approximate Policy Iteration and Approximate Generalized(More)
This paper reports theoretical and empirical investigations on the use of quasi-Newton methods to minimize the Optimal Bellman Residual (OBR) of zero-sum two-player Markov Games. First, it reveals that state-of-the-art algorithms can be derived by the direct application of New-ton's method to different norms of the OBR. More precisely, when applied to the(More)
In this paper, an original framework to model human-machine spoken dialogues is proposed to deal with co-adaptation between users and Spoken Dialogue Systems in non-cooperative tasks. The conversation is modeled as a Stochastic Game: both the user and the system have their own preferences but have to come up with an agreement to solve a non-cooperative(More)
The main contribution of this paper consists in extending several non-stationary Reinforcement Learning (RL) algorithms and their theoretical guarantees to the case of γ-discounted zero-sum Markov Games (MGs). As in the case of Markov Decision Processes (MDPs), non-stationary algorithms are shown to exhibit better performance bounds compared to their(More)
This paper addresses the problem of learning a Nash equilibrium in γ-discounted mul-tiplayer general-sum Markov Games (MGs) in a batch setting. As the number of players increases in MG, the agents may either collaborate or team apart to increase their final rewards. One solution to address this problem is to look for a Nash equilibrium. Although , several(More)
  • 1