Learn More
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper fo-cuses on the large-scale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem(More)
Sparse coding---that is, modelling data vectors as sparse linear combinations of basis elements---is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on <i>learning</i> the basis set, also called dictionary, to adapt it to specific data, an approach that has recently proven to be very effective for signal(More)
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context,(More)
We propose in this paper to unify two different approaches to image restoration: On the one hand, learning a basis set (dictionary) adapted to sparse signal descriptions has proven to be very effective in image reconstruction and classification tasks. On the other hand, explicitly exploiting the self-similarities of natural images has led to the successful(More)
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The(More)
It is now well established that sparse signal models are well suited to restoration tasks and can effectively be learned from audio, image, and video data. Recent research has been aimed at learning discriminative sparse models instead of purely reconstructive ones. This paper proposes a new step in that direction, with a novel sparse representation for(More)
Sparse signal models have been the focus of much recent research, leading to (or improving upon) state-of-the-art results in signal, image, and video restoration. This article extends this line of research into a novel framework for local image discrimination tasks, proposing an energy formulation with both sparse reconstruction and class discrimination(More)
—Techniques from sparse signal representation are beginning to see significant impact in computer vision, often on non-traditional applications where the goal is not just to obtain a compact high-fidelity representation of the observed signal, but also to extract semantic information. The choice of dictionary plays a key role in bridging this gap:(More)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion(More)
An important goal in visual recognition is to devise image representations that are invariant to particular transformations. In this paper, we address this goal with a new type of convolutional neural network (CNN) whose invariance is encoded by a reproducing kernel. Unlike traditional approaches where neural networks are learned either to represent data or(More)