Julien Didierjean

Learn More
The experimental demonstration of a diode-pumped passively mode-locked femtosecond laser based on an Yb3+:CaGdAlO4 single crystal is reported. The oscillator is directly diode pumped by a high-brightness 5 W fiber coupled laser diode, and pulses are produced by use of a semiconductor saturable-absorber mirror. It permits the production of pulses as short as(More)
We demonstrated laser operation of a passively Q-switched diode-pumped Er:YAG solid-state laser emitting at 1645 or 1617 nm depending on the initial transmission of the Cr:ZnSe saturable absorber. The crystal emitted up to 10 W at 1645 nm and up to 8 W at 1617 nm in CW mode while pumped with 65 W of incident pump power at 1533 nm. In passive Q-switched mode(More)
fiber laser emitting at 946 nm. Xavier Délen, Igor Martial, Julien Didierjean, Nicolas Aubry, Damien Sangla, François Balembois, and Patrick Georges Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Université Paris-Sud, RD 128, France Fibercryst SAS, La Doua-Bâtiment l’Atrium, Boulevard Latarjet, F69616 Villeurbanne Cedex, France Université de Lyon,(More)
We present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak(More)
We demonstrate an Yb:YAG single-crystal fiber laser with 251 W output power in continuous-wave and an optical efficiency of 44%. This performance can be explained by the high overlap between pump and signal beams brought by the pump guiding and by the good thermal management provided by the single-crystal fiber geometry. The oscillator performance with a(More)
We report an in situ thermal study of Yb-doped fluorite crystals Yb:CaF(2) and Yb:SrF(2) under high power pumping, with or without laser operation. The experiment combines simultaneously thermography and measurement of the thermal aberrations. This setup allows us to measure temperature gradients, thermal lens, and absorption coefficients. From these(More)
We explore the potential of Nd:YAG single-crystal fibers for the amplification of passively Q-switched microlasers operating below 1 ns. Different regimes are tested in single or double pass configurations. For high gain and high power amplification this novel gain medium provided average powers up to 20 W at high repetition rate (over 40 kHz) for a pulse(More)
We report the realization of a frequency doubled, actively Q-switched and polarized oscillator based on Nd:YAG single-crystal fiber. A laser output of 8 W, 10 kHz, and 30 ns at 946 nm is reported. The laser is extracavity frequency doubled in a BiBO crystal to obtain 3 W and 300 μJ of blue laser with a beam quality of M(2)y=1.12 and M(2)x=1.38. The obtained(More)
We demonstrated that Yb:YAG single crystal fibers have a strong potential for the amplification of femtosecond pulses. Seeded by 230 fs pulses with an average power of 400 mW at 30 MHz delivered by a passively mode-locked Yb:KYW oscillator, the system produced 330 fs pulses with an average power of 12 W. This is the shortest pulse duration ever produced by(More)
We present unique spatial-mode switching in a cw Yb:CALGO laser when pumped at a multihundred-watts power level. It permits us to automatically stabilize to a TEM(00) mode from a highly spatial multimode regime. This stabilization is achievable thanks to polarization-mode switching allowed by the particular spectroscopic and thermal properties of Yb:CALGO(More)